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Abstract

Lee et al. proposed two methods to speed up the com-
putation of scalar multiplication of elliptic curve defined
over GF (2mn) with a medium size of m in the range
10 ≤ m ≤ 20. In these methods, Frobenius map is uti-
lized to expand the integer k and each coefficient of the
expansion is represented as a binary string. In this pa-
per, with the application of joint sparse form (JSF) to
the coefficients, some variations of Lee et al.’s methods
are proposed to achieve a better performance at a lower
storage requirement.
Keywords: Elliptic curve cryptography, frobenius map,
joint sparse form, scalar multiplication

1 Introduction

Elliptic curve cryptosystem (ECC) was first proposed by
Koblitz [17] and Miller [25] independently, and has been
widely studied in recent years. It has the advantage of
shorter key length and higher efficiency with the same
security level over RSA, which make it more and more
popular in applications especially in wireless communica-
tion system. Table 1 is listed below to illustrate the key
length comparison of ECC and RSA and Table 3 to the
speed comparison [25]. As for those desired properties,
it had been adopted by many standards and commercial
systems.

In most applications of ECC, such as signature, public
key encryption, Diffie-Hellman key exchange and so on,
Scalar Multiplication (SM) is the basic and most time-
consuming operation. It is the k-time addition of point P,
where k is a large positive integer and P is a base point
on the curve. The computational speed of SM is affected
by three aspects: Finite field operations, of which inver-
sion is the most key one [1, 6, 12, 14, 16, 31]; Curve point
operation, including double, addition, double and addi-
tion etc. [3]; Representation of the scalar k. An overview

Table 1: Key length comparison of RSA and ECC

MIPS Year RSA Key ECC Key Ratio
Length Length

104 512 106 5:1
108 768 132 6:1
1011 1024 160 7:1
1020 2048 210 10:1
1078 21000 600 35:1

of the research results on SM of ECC can be taken from
[10, 23].

Of the above three aspects, decomposition of scalar
k gains most of the recent research interests. For the
purpose of speeding up the computation, there are three
factors in decomposition need to be considered. Firstly,
the base should be selected such that the base time of
points is efficient. Secondly, the representation length
should be short. Finally, the representation Hamming
density, which is the ratio of the non-zero digits to all
digits, should be small.

According to the expansion base, scalar expansion
methods can be classified as two kinds: integer base meth-
ods and endomorphism base methods. Integer 2 was
firstly used as a base to decompose k. After that, NAF
(Non Adjacent Form), which can assure that there are no
two contiguous non-zero digits, was proposed to lower the
Hamming density [2]. Furthermore, w window techniques
were applied on NAF to get NAFw, which make the den-
sity more and more sparse [5]. Besides 2, any a positive
integer bigger than 2 can also be used as base to decom-
pose k. w -based expansions have shorter length [8]. In
2006, double base chain, which uses the integer pair (2,3)
as base, was given. It achieves shorter length and lower
density [7, 30]. Endomorphism is a map from an ECC
group to itself. Selecting an efficient endomorphism as
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base is another improvement of method in SM computa-
tion. For example, endomorphism τ of Koblitz curve only
needs a simple shift-row operation which is almost free
when underlying finite field adopts normal basis. τ based
decomposition methods has a much faster computational
speed [18, 27]. Following τ , many efficient endomorphisms
were given [4, 9, 19, 24].

In particular, the Frobenius map which is an endomor-
phism was used to obtain the Frobenius expansion of k for
the curve over GF(2n) with a small m [26]. Recently, Lee
et al. extended the idea to the curve over GF(2mn) with a
medium size of m(10 ≤ 20) and proposed two algorithms
to accelerate the computation of kP [20]. The joint sparse
form (JSF) [28] was a variation of signed binary repre-
sentation of a pair of integers, which could lead to more
double zero positions and thus a reduction in computa-
tional complexity. In lee et al’s methods, each coefficient
of Frobenius expansion is represented as a binary string
and all these bits build up the bits coefficient matrix.
Finally, the matrix is deal with longitudinal w -bit combi-
nation and transverse w-bit combination respectively to
build two methods.

Based on their idea, we have a little modification on the
generation of the bits coefficients matrix. After Frobenius
expansion of k is obtained, which is (C0, C1, . . . , Cl−1).
If l mod 2 = 1, set C1 = 0. Let s = b (l−1)

2 c, and JSF
is applied on every coefficient pair of (c2x, c2x+1)(x =
0, 1, . . . , s) to obtain the coefficient matrix

c =




c0,m−1 . . . c0,0

...
...

...
c2s+1,m−1 . . . c2s+1,0




.
After the matrix is generated, we use almost the same

idea to compute SM. That is to say, our main idea is
combination of JSF and Frobenius map inspired by Lee
et al.

The rest of this paper is organized as follows. In Sec-
tion 2, the joint sparse form is briefly introduced. Lee
et al.’s methods, as well as the Frobenius map are de-
scribed in Section 3. Then we will propose our modified
algorithms in Section 4, together with a detailed analysis
of the computational complexity and the storage require-
ment. Finally, a conclusion is drawn in Section 5.

2 Joint Sparse From

Joint sparse form is a variation of the signed binary rep-
resentation of a pair of integers that leads to more dou-
ble zero positions. Algorithm 1 is adopted to obtain the
JSF of a given pair of integers a and b. The notation
c = a mod b means that c ≡ a mod b and −b/2 ¡ c ≤ b/2.

• (JSF-1) Of any three consecutive positions, at least
one is a double zero. In other words, for any positions
i and j, we have ui,j+k = u1−i,j+k for k = 0 or ui,j+k

= u1−i,j+k = 0 for k = 0 or ±1.

Table 2: Speed comparison of RSA and ECC

Functions Time(ms) Time(ms)
ECC-163bit RSA-1024bit
Security Builder 1.2 BSAFE 3.0

Key Generation 3.8 4,708.3
Sign 2.1(ECNRA) 228.4

3.0(ECDSA)
Verification 9.9(ECNRA) 12.7

10.7(ECDSA)
DH Exchange 7.3 1,654.0

Algorithm 1 Algorithm 1 (JSF)
1: Input integer pair a and b Output
2: JSF of a and b
3: Process
4: Set k0 = a and k1 = b, Set j = 0
5: while k0 ¿ 0 or k1 ¿ 0 do
6: For i = 0 to 1 do
7: if ki is even then
8: u = 0
9: else

10: u = ki mod 4
11: if ki ≡ ±3(mod8) and ki ≡ 2(mod4) then
12: u = −u
13: Set ui,j = u
14: end if
15: next i
16: For i = 0 to 1 do
17: ki = (ki = ui,j)/2
18: next i
19: j = j + 1
20: end if
21: Periodically refresh the observations storage
22: end while
23: End
24: The JSF possesses the following properties that had

been proved in [21], namely, JSF-1, JSF-2, JSF-3 and
JSF-4.

• (JSF-2) Adjacent terms do not have opposite signs.
In other words, there is never the case that
ui,ju1−i,j+k = -1.

• (JSF-3) If ui,j+k 6=0 then u1−i,j+k = ±1, and u1−i,j

= 0.

• (JSF-4) The probability of occurrence of double zero,
which satisfies ui,j+k = u1−i,j+k = 0 for position j,
is 1/2.

3 Lee et al.’s Methods

For elliptic curve over finite field GF(2mn), where m
is a middle size integer generally bounded in the area
of [22, 28]. With the utilization of Frobenius map, Lee at
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el. Proposed two methods to speed up the scalar multi-
plication.

1) Frobenius Expansion
For a non-supersingular curve over GF (qn), where q
= 2m, given by the Weierstrass equation of the form

E(GF (qn)) : y2 + xy = x3 + ax2 + b,

where a, b ∈ GF (q) and b 6= 0, Frobenius map
is an endomorphism of the elliptic curve group
E(GF (qn)). It is defined from E(GF (qn)) to itself
as:

φ : E 7→ E(x, y) 7→ (x℘, y℘).

Let ]E(GF (qn)) denote the number of GF (qn)-
rational point of E(GF (qn)) and t = q + 1 -
]E(GF (qn)), then the characteristic polynomial of
φ is φ2 - tφ + q = 0Athat is φ2(P ) - tφ(P ) + qP
= 0 for all P ∈ E(GF (qn)). Since there is a natural
homomorphism from the ring Z[φ] to the ring Z[φ],
which mapsα = (t +

√
t2 − 4q/2) to φ, the integer k

can be expressed as the sum of k =
∑

ciφ
i. This ex-

pression is called the Frobenius expansion of k. For
the map, there are following theorems that had been
proved in [29].

Theorem 1. [29] For any given positive integer k,
the Frobenius expansion k =

∑l−1i=0Ciφ
i(−q/2 <

ci ≤≤ q/2, q ≥ 64) exists. It is unique and has length
l ≤n + 3.

Theorem 2. [29] For any given positive integer k,
the Frobenius expansion k =

∑l−1i=0ciφ
i(0 ≤ ci <

q, q ≥ 64). It is unique and has length l ≤n + 5.

2) Method 1
Firstly, the Frobenius expansion of k =∑l−1i=0ciφ

i(0 ≤ ci < q) is obtained. Then,
each coefficient ci is represented as a binary string
(ci,m−1ci,m−2, . . . , ci,1ci,0). Finally kP can be
computed via the formula:

kP =
l−1∑

i=0

ciφ
i(P )

=
∑

l − 1i=0

m−1∑

j=0

ci,j2jφi(P )

=
∑

l − 1i=02j
m−1∑

j=0

ci,jci,jφ
i(P ). (1)

Let bit string a = (aw−1, aw−2, . . . , a1, a0) and Sa

=aw−1φ
w−1(P )+aw−2φ

w−2(P )+. . .+a1φ(P )+a0P ,
Equation (1) can be varied to Equation (2) as :

kP =
m−1∑

j=0

2j
l−1∑

i=0

ci,jφ
i(P ), (2)

where

Tj =
l−1∑

i=0

ci,jφ
i(P )

=
dm/we−1∑

i=0

φwiS(cwi+w−1,j ,cwi+w−2,j ,··· ,cwi+1,j ,cwi,j).

Algorithm 2 is the programming description of
Method 1.

Algorithm 2 Algorithm 2 (Method 1)
1: Input
2: Integer k, point P
3: Output
4: kP

Pre-computation and Storages:

• Frobenius expansion of k =
∑l−1

i=0 ciφ
i (0 ≤ ci ¡

q)

• Binary string (ci,m−1, ci,m−2, . . . , ci,1, ci,0) of
each coefficient ci.

• Sa = aw−1φ
w−1(P ) + aw−2φ

w−2(P ) + . . . +
a1φ(P ) + a0P for all (aw−1, aw−2, . . . , a1, a0) ∈
{0, 1}w, where w is a chosen window size.

Process:

a. Q = O;

b. for j = m-1 downto 0 do

i. for i = dl/we − 1 downto 0 do
A. T = φw(T );
B. a = (cwi+w−1,j , cwi+w−2,j , . . . , cwi+1,j , cwi,j);
C. T = T + Sa

ii. Q = Q + T ;

c. return Q;

From the algorithm definition, we have the following
theorems.

Theorem 3. Let A stand for point addition, D
for Doubling and Φ for Frobenius map φ, the to-
tal number of operations of Algorithm 2 is TO ≈
mD + (1− 1/2w)(mn/w)A + (mn)Φ.

Proof. One by one counting in Algorithm 2, it can be
easily obtained that the total number of operations
in Algorithm 2.

TO = (m− 1)D + (1− 1/2w)
+(l − 1/2w)(dl/wem− 1)A

+((dl/we − 1)wm)Φ.
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Since l ¡ n + 5 following Theorem 2, then

TO = (m− 1)D + (1− 1/2w)(d(n + 5)/wem− 1)A
+((d(n + 5)/we − 1)wm)Φ

≈ mD + (l − 1/2w)(mn/w)A + (mn)Φ.

Theorem 4. The number of storages required by Al-
gorithm 2 is 2w − w − 1.

Proof. The number of possible values of Sa is 2w.
However, as the map φ is almost free (only twice
m-bit left-shift) when normal basis representation is
utilized on the finite field, then φi(i = 0, 1, . . . , w−1)
and O needn’t be stored. Hence the theorem holds.

3) Method 2
In fact, we may take all the binary strings of the
Frobenius expansion coefficients as a binary matrix.
Method 1 can be looked as a column combination.
On the other hand, when raw combination is applied
on the matrix, Method 2 is proposed. In Method 2,
as in Method 1, firstly, the Frobenius expansion of k
=

∑l−1
i=0 ciφ

i(−q/x < ci ≤ q/2) is obtained. Then,
each coefficient |ci| is represented as a binary string
(ci,mci,m−3, . . . , ci,1ci,0). Finally kp can be computed
via the formula:

kP =
l−2∑

i=0

ciφ
j(P )

=
l−1∑

i=0

m−1∑

j=0

εici,j2jφi(P ), (3)

where εi = ci/|ci|.
Let bit string a = (aw−1, aw−2, . . . , a1, a0) and Sa =
aw−12q−1P + aw−2x

w−2P + . . . + a12P + a0P , then
Equation (3) will be modified to Equation (4):

kP =
l−1∑

i=0

m−1∑

j=0

εici,j2jφi(P )

=
dm/we−1∑

r=0

2rT ′r (4)

where

Tr =
rw−1∑

j=rw

2j−rw
l−1∑

i=0

εici,jφ
i(P )

=
l−1∑

i=0

εiφ
iS(ci,wr+w−1,cwr+w−2,...,ci,wr+1,ci,wr)

Algorithm 3 is the programming description of
Method 2.

Algorithm 3 Algorithm 3 (Method 2)
1: Input
2: Integer k, point P
3: Output
4: kP

Pre-computation and Storages:

a. Frobenius expansion of

k =
l−1∑

i=0

ciφ
i(−q/2 ≤ ci ≤ q/2);

b. Binary string (ci.m−1, ci,m−2, . . . , ci,1ci,0) of
each coefficient ci.

c. Sa = aw−12q−1P + aw−2x
w−2P + . . . + a12P +

a0P for all a = (aw−1, aw−2, . . . , a1, a0) ∈
{0, 1}w, where w is a chosen window size.

Process:

a. Q = O;
b. for j = dm/we-1 downto 0 do

i. for Q = 2wQ,T = O;
ii. for i = l − 1 downto 0 do

A. T = φ(T ); εi = ci/|ci|;
B. a = (ci,jw+w−1, ci,jw+w−2, · · · , ci,jw+1,

ci,jw);
C. T = T + εiSa.

iii. Q = Q + T ;
c. return Q;

Based on Method 2, we have the following theorems.

Theorem 5. Let A stand for point addition, D for Dou-
bling and Φ for Frobenius map φ, the total number of
operations of Algorithm 3 is

TO ≈ mD + (l − 1/2w)(mn/w)A + (mn/w)Φ.

Proof. From the procedures of Algorithm 3, it can be eas-
ily counted one by one that the total number of operations

TO = ((dm/we − 1)w)D
+((1− 1/2w)(l − 1)dm/we)A

+(l − 1)dm/weΦ.

From Theorem 1, we have l ≤ n + 3, then

TO = ((dm/we − 1)w)D
+((1− 1/2w)(l − 1)(n + 3− 1)dm/we)A

+((n + 3− 1)dm/we)Φ ≈ mD

+(1− 1/2w)(mn/w)Φ.
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Theorem 6. Theorem 6 The number of storages required
by Algorithm 3 is 2w - 2.

Proof. The number of possible values of Sa is 2w. It is ob-
vious that O and P needn’t be stored. Thus the theorem
holds.

If normal basis representation is applied in the finite
field, which makes the map φ almost free, Algorithm 2 is
more efficient. Otherwise, Algorithm 3 is more efficient,
especially when the improvement of [3] is utilized to com-
pute 2wP .

4 The Proposed Method

The idea of Lee et al.’s methods is like this. First, the
Frobenius expansion of k is obtained. Then each coeffi-
cient of the expansion is represented as a binary string
and all these bits build up the coefficient matrix. Finally,
the matrix is deal with longitudinal w-bit combination by
Algorithm 2, and transverse w-bit combination by Algo-
rithm 3. In Algorithm 2, if Sa = 0, then the addition can
be saved. In situation that the amount of storage is lim-
ited, the value of w needs to be very small. In particular,
if w = 2, JSF of ci and ci+1 can be applied to increase the
probability of getting sa = 0 and thus reduce the point
additions in the computation of kP . This forms the idea
of our proposed Method 1. On the other hand, if the
storage resource is rich, a combination of the transverse
w positions of the JSF of ci and ci+1 is used in our pro-
posed Method 2. We not only give a detailed description
or our methods, but also have an accurate evolution on
the number of atomic operations and storages. Further-
more, we do a comparison on both methods between ours
and Lee at el.’s.

4.1 The Proposed Method 1

Let k =
∑l−1

i=0 ciφ
i(−q/2 < ci ≤ q/2) be the Frobenius

expansion of k as before. If l mod 2 = 1, set cl = 0. Let s
= d(l−1)/2e, and JSF is applied on every coefficient pair
of (c2x, c2x+1)(x = 0, 1, . . . , s) to obtain the coefficient
matrix

c =




c0,m−1 . . . c0,0

...
...

...
c2s+1,m−1 . . . c2s+1,0




.
Let a = (a1, a0), and sa = a1/phi(P ) + a0P , then we

have the Equation (5):

kP =
m−1∑

j=0

l−1∑

i−0

ci,j/phii(P ) =
l−1∑

j=0

2jTj (5)

The Equation (5) can be programmed as Algorithm 4,
which is our proposed Method 1.

Pre-computation and Storages:

Algorithm 4 Algorithm 4 (proposed Method 1)
1: Input
2: Integer k, point P
3: Output
4: kP

• Frobenius expansion of

k =
l−1∑

i=0

ciφ
i(−q/2 < ci ≤ q/2).

• JSF of (c2x, c2x+1) for (x = 0, 1, . . . , s).

• Coefficient matrix c =




c0,m−1 . . . c0,0

...
...

...
c2s+1,m−1 . . . c2s+1,0


.

• Sa = a1φ(P ) + a0P for (a1, a0) ∈ {0,±1}2 (only
φ(P )± P needs to be stored).

Process:

1) Q = O;

2) for j = m-1 downto 0 do

a. for Q = 2Q,T = O;

b. for i = s downto 0 do

i. T = φ2(T );
ii. a = (c2i+1,j , c2i,j);
iii. T = T + Sa

c. Q = Q + T ;

3) return Q;

In Algorithm 4, we have the following theorems about the
computing speed and the storages.

Theorem 7. Let A stand for point addition, D for Dou-
bling and Φ for Frobenius map φ, the total number of op-
erations in Algorithm 4 is TO ≈ mD+(mn/4)A+(mn)Φ.

Proof. From property JSF-4, we have P (Sa = O) = 1/2.
From the procedure, the total number of atomic opera-
tions in Algorithm 4 is

TO = (m− 1)D + (1− 1/2)(dl/2e)A + ((dl/2e − 1)2m)Φ.

Following Theorem 1, we have l ≤ n + 3, thus

TO = (m− 1)D + (1− 1/2)(d(n + 3)/2em− 1)A
+((d(n + 3)/2em− 1)A.

Theorem 8. The amount of storage required by Algo-
rithm 4 is 2.
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Table 3: Comparison of our method with Lee’s on
Method 1

TO Storages
Lee’s Scheme mD + (3nm/8) 1

(w=2) A + (mn)Φ
The Proposed Scheme mD + (mn/4) 2

A + (mn)Φ

Proof. Only φ(P ) ± P need to be stored. If a ∈
{(0, 0), (±1, 0), (0,±1)}, it is obviously that Sa need not
be stored. If a = (−1, 1) then Sa = −(φ(P ) − P ). Simi-
larly, if a = (−1,−1), Sa = −(φ(P ) + P ).

Comparing with Algorithm 2 for the case w = 2, about
mn/8 additions are reduced with the cost of an additional
storages.

4.2 The Proposed Method 2

If the amount of storage is not too restricted, one can
choose Method 2. Let the coefficient matrix

c =




c0,m−1 . . . c0,0

...
...

...
c2s+1,m−1 . . . c2s+1,0




be the same as the proposed Method 1.
Let

a =
[

a0,w . . . a0,0

a1,w−1 . . . a1,w−1

]

and

Sa =
w−1∑

j=0

sj
l∑

i=0

ai,jφ
i(P ),

then Equation (4) will be modified as Equation (6):

kP =
l−1∑

i=0

m−1∑

j=0

ci,jx
jφi(P ) =

dm/we∑
r=0

2rT ′r (6)

where

Tr =
l−1∑

i=0

φ2iS(ci,2r+1,ci,2r)

Equation (6) is also used in our Method 2, which can be
programmed as Algorithm 5.

Algorithm 5 Algorithm 5 (Proposed Method 2)
1: Input
2: Integer k, point P
3: Output
4: kP

Pre-computation and Storages:

• Frobenius expansion of

k =
l−1∑

i=0

ciφ
i(−q/2 < ci ≤ q/2).

• JSF of (c2x, c2x+1) for (x = 0, 1, . . . , s).

• Coefficient matrix c =




c0,m−1 . . . c0,0

...
...

...
c2s+1,m−1 . . . c2s+1,0


.

• Compute

Sa =
w−1∑

j=0

2j
l∑

i=0

ai,jφ
i(P )

a =
[
a0,w−1 . . . a0,0

a1,w−1 . . . a1,w−1

]

and ai,j ∈ {0,±1}-. If b = −a then Sb need not to
be stored as Sb = −Sa.

Process:

1) Q = O;

2) for j = dmc-1 downto 0 do

a. for Q = 2wQ,T = O;
b. for i = s downto 0 do

i. T = φ2(T );

ii. a = a =
[

a2i,jw+w−1 . . . a2i,jw

a2i+1,jw+w−1 . . . a2i+1,jw

]
;

iii. T = T + Sa

c. Q = Q + T ;

3) return Q;

Based on Algorithm 5, we have the theorems below.

Theorem 9. Let A stand for point addition, D for Dou-
bling and Φ for Frobenius map φ, the total number of
operations required by Algorithm 5 is TO ≈ mD + (1 −
1/2w)(mn/(2w)) + (mn/w)Φ.

Proof. From property JSF-4, we have P (Sa = O) =
1/2w. From the procedures of Algorithm 5, it can be
easily obtained that the total number of operations is
TO = ((dm/we−1)w)D+((1−1/2w)(bl−1/2c)dm/we)A+
(b(l − 1/2)c)dm/weΦ. By Theorem 1, we have l ≤ n + 3.
Hence

TO = ((dm/we)w)D
+((1− 1/2w)(b(n + 3− 1)/2c)dm/we)A

+((b(n + 3− 1)/2c)dm/we)Φ ≈ mD

+(1− 1/2w)(mn/w)Φ.



International Journal of Network Security, Vol.11, No.2, PP.70–77, Sept. 2010 76

Table 4: Comparison of our method with Lee’s on
Method 2

Total Operations Strorages
mD+(1-1/2w) (mn/2w) 16 w=2

Our A+ (mn/w)Φ 62 w=3
608 w=4

Lee’s mD+(1-1/2w)(mn/w)A+( 2 w=2
mn/w) Φ 6 w=3

14 w=4

Theorem 10. The number of storages required by Algo-
rithm 5 is as below:

1) If w = 2, it is 16;

2) If w = 3, it is 62;

3) If w = 4, it is 308.

Proof. The number of possible values of Sa is 32w. With
the restriction of JSF-1, JSF-2 and JSF-3, the number
decreases a lot. Since only either one of a and −a needs to
be stored as well as φ(P ) and P needn’t be stored. Thus
it can be checked one by one when w = 2, 3, 4 respectively
to get result of the theorem.

When the improvement of [3] is utilized to compute
2wP , Algorithm 5 can be further accelerated. Compar-
ing with Algorithm 3, about (1−1/2w)(mn/2w) additions
are saved. However, the amount of storage required in-
creases substantially. Thus it is suitable for small w. For
example, Algorithm 5 with w = 2 has the same computa-
tional complexity as Algorithm 3 with w = 5 with a lower
amounts of storages. The same result can be obtained
for w = 3 of Algorithm 5 to w = 7 of Algorithm 3,also
w = 4 of Algorithm 5 to w = 9 of Algorithm 3. However,
for w > 4, the number of storages is too large and our
proposed Method 2 has no practical meaning. For this
reason, the storages number needed for w > 4 needn’t to
be cared.

5 Conclusion

Based on the coefficient matrix of the Frobenius expan-
sion of the integer k when computing the scalar multi-
plication kP of elliptic curve cryptography over GF (2mn)
with a medium size m, the idea of longitudinal w-bit com-
bination and transverse w-bit combination are separately
proposed by Lee et al. to form Algorithms 2 and 3 to
speed up the computation. For Algorithm 2, we apply the
JSF form on the coefficients to obtain the coefficient ma-
trix and propose our Method 1. It is suitable for limited
storage situation and saves mn/8 point additions with
an additional storage when compared with Algorithm 2
of w = 2. Based on proposed Method 1, the idea of
transverse w-position combination is utilized to form our

Method 2. It saves about (1− 1/2w) (mn/2w) point ad-
ditions when compared with Algorithm 3. The value of w
can be selected to balance the computational speed and
the storage requirements. As the amount of storage in-
creases substantially with w, it is practical for relatively
small w. For example this algorithm with w = 2 has the
same result as Algorithm 3 with w = 5, but the storage
required is fewer. The value of w can also be selected as
w = 3 or w = 4 if the storages resource is rich. Never-
theless, it has no any practical meaning for w > 4 as the
storages number is too large.
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