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Abstract

Using Schnorr’s digital signature (DS) scheme as the un-
derlying scheme there is designed the collective DS proto-
col. In the proposed collective DS protocol the signature
is formed simultaneously by all signers, therefore using
this protocol leads to natural solution of the problem of
signing simultaneously a contract. Using the proposed
collective DS protocol the blind collective DS protocol has
been designed, which is a new type of the multi-signature
schemes. For simultaneous signing a package of different
contracts by different sets of signers it is proposed another
new multi-signature scheme called composite signature.
Keywords: Blind collective signature, blind signature,
composite signature, collective digital signature, digital
signature, discrete logarithm problem

1 Introduction

The digital signatures (DS) are widely used in informa-
tion systems. To solve different practical problems con-
nected with electronic documents authentication a vari-
ety of the DS protocols has been proposed [11, 14, 15].
A particular type of the protocols, called multi-signature
protocols, provides to form a single signature shared by
several signers [1, 3]. Recently a particular variant of the
multi-signature schemes, called collective DS, has been
proposed [9]. That variant of the multi-signature pro-
tocols is based on the difficulty of finding large prime
roots modulo a 1024-bit prime p possessing the structure
p = Nk2−1, where N is an even number and k is a 160-bit
prime. The protocol produces a fixed size collective DS
for arbitrary number of signers, however the DS length is
sufficiently large, actually, 1184 bits.

Using the general design of the collective DS scheme [9]
in this paper there is designed the collective DS protocol
based on difficulty of finding discrete logarithm, which
produces a 320-bit collective signature. The proposed col-
lective DS scheme has been used to construct a new type
multi-signature scheme called blind collective DS proto-
col. It can be applied, for example, in the electronic

money systems in which the electronic banknotes are is-
sued by several banks. It is also described another new
protocol called composite DS protocol characterized in
that the document-dependent public keys are used.

2 Collective Signature Protocols

2.1 Protocol Based on Difficulty of Find-
ing Roots Modulo A Prime

In the paper [9] there is proposed a DS scheme based
on difficulty of finding the kth roots modulo large prime
p such that k2|p − 1, where k and p are primes. In
that scheme the public key Y is computed as follows
Y = Xk mod p, where X is the secret key. A signature
to some message M consists of two numbers (E, S). The
signature verification is performed in three steps:

1) It is computed value R∗ = Y ESk mod p;

2) Using some specified hash function FH it is computed
the hash value E∗ from the message M to which the
value R is concatenated: E∗ = FH(M‖R), where ‖
denotes the concatenation operation;

3) The value E∗ is compared with E. If E∗ = E, then
the signature is valid. Otherwise the signature is re-
jected.

The upper boundary of the security of the DS scheme is
defined by the difficulty of finding the kth roots modp in
the mentioned special case. To estimate the security in [9]
there are proposed two methods for finding the kth roots
modp. Independently of the length of the modulo p the
difficulty of the fist method is estimated as O(

√
k), where

O(·) is the order notation (see Appendix 1). The first
method is efficient for arbitrary value p, if |k| < 160 bits,
where |k| denotes the binary length (size) of the number
k. In the second method the most difficult procedure
is finding discrete logarithm modulo p, therefore it has
subexponential difficulty. The second method is efficient
for arbitrary prime k (k <

√
p), if |p| < 1024 bits (see

Appendix 2).
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Taking into account that methods the O(280) difficulty
of finding the kth roots mod p is provided, if the primes k
and p have the length |k| ≥ 160 bits and |p| ≥ 1024 bits.
Sufficiently large size of the modulus p defines sufficiently
large size of the DS produced by the algorithms based
on the mentioned difficult problem. In the best case the
signature size is equal to 1184 bits.

Specific design of that DS scheme has been used to
construct a multi-signature scheme that works as follows.
Suppose the jth user owns the private key Xj < p and
the public key Yj = Xk

j mod p, where j = 1, 2, · · · , n.
Suppose some subset of m users is to sign a message M
with some single DS called collective DS. The following
protocol solves the problem.

1) Each αith user generates a random value tαi < p
(it is a disposable secret key) and calculates the
value Rαi

= tkαi
mod p, where i = 1, 2, · · · , m and

∀i : αi ∈ {1, 2, · · · , n}.
2) The common randomization value R is computed:

R = Rα1Rα2 · · ·Rαm
mod p.

3) The first part E of the collective DS (E, S) is com-
puted using some specified hash function FH :
E = FH(M‖R).

4) Using the common value E and individual dispos-
able secret key tαi each of the users computes its
share in the collective DS: Sαi = X−E

αi
tαi mod p,

i = 1, 2, · · · ,m.

5) Compute the second part S of the collective DS:
S = Sα1Sα2 · · ·Sαm mod p.

The collective DS verification is performed as follows.

1) Compute the collective public key Y as product Y =
Yα1Yα2 · · ·Yαm mod p.

2) Using the signature (E,S) compute value R∗: R∗ =
Y ESk mod p.

3) Compute E∗ = FH(M‖R∗).
4) Compare values E∗ and E. If E∗ = E, then the sig-

nature is valid. Otherwise the signature is rejected.

The described protocol works correctly, i. e. it pro-
duces the collective signature (E, S) that satisfies the sig-
nature verification equation, in which there is used the
public key that is equal to Y =

∏m
i=1 Yαi mod p. Indeed,

computation of the value R∗ gives

R∗ ≡ Y ESk ≡
(

m∏

i=1

Yαi

)E (
m∏

i=1

Sαi

)k

≡

≡
(

m∏

i=1

Xαi

)kE (
m∏

i=1

X−E
αi

tαi

)k

≡

≡
m∏

i=1

tkαi
≡

m∏

i=1

Rαi ≡ R mod p ⇒

⇒ E∗ = FH(M‖R∗) = FH(M‖R) = E.

The main advantage of the described protocol con-
sists in its internal integrity. Namely, in the protocol
none of the signers generates his individual signature. He
generates only its share in the collective DS that corre-
sponds exactly to the set of m user presented by numbers
α1, α2, · · · , αm. Besides, it is computationally difficult to
manipulate with shares Sj j ∈ {α1, α2, · · · , αm}, · · · and
compose another collective DS, relating to some different
set of users. Due to the internal integrity of the collec-
tive DS protocol it solves naturally the problem of sign-
ing simultaneously a contract [11]. Note that the multi-
signature protocols proposed in [1] are not able to solve
this problem without the help of some trusted party par-
ticipating in the protocol.

However the considered protocol produces collective
signature having comparatively large size that equals to
1184 bits in the case of 80-bit security. To reduce the sig-
nature length there is proposed the collective DS protocol
described in the next subsection.

2.2 Protocol Based on Difficulty of Find-
ing Discrete Logarithm

The problem of reducing the collective signature size is
solved using the computationally difficult problem of find-
ing discrete logarithm in the finite field Fp, where p is a
sufficiently large prime. The following collective DS pro-
tocol combining Schnorr’s DS scheme [12] with general
construction of the protocol by [9] produces the 320-bit
collective signature. Suppose there is used a prime modu-
lus p such that p− 1 contains a large 160-bit prime factor
q, the element g that is generator of the q order subgroup
in F∗p, and public key Y = gx mod p, where x is the secret
key. Selected sizes of the parameters p and q provide the
80-bit security. Suppose also that m users should sign
the given message M . The collective DS protocol works
as follows.

1) Each of the users generates his individual random
value ti and computes Ri = gti mod p.

2) It is computed the common randomization parameter
as the product R = R1R2 · · ·Rm mod p.

3) Using the common randomization parameter R and
some specified 160-bit hash function FH it is com-
puted the first element E of the collective DS: E =
FH(M‖R), where M is the message to be signed and
‖ is the concatenation operation.

4) Each of the users computes his share Si in the second
element of the collective DS Si = ti + xiE mod q,
i = 1, 2, · · · , m.

5) The second element S of the collective DS (R, S) is
computed as follows S = S1 + S2 + · · ·+ Sm mod q.



International Journal of Network Security, Vol.11, No.2, PP.106-113, Sept. 2010 108

Size of the value S is equal to 160 bits, since it is com-
puted modulo a 160-bit value q. The total size of the sig-
nature (E, S) is 320 bits that is significantly less then in
the case of the collective DS protocol based on difficulty of
finding large prime roots modulo a 1024-bit prime p. The
signature verification is performed exactly as in Schnorr’s
DS algorithm [12], except the first step is added:

1) Compute the collective public key as product of in-
dividual public keys of each of the users: Y =
Y1Y2 · · ·Ym mod p.

2) Using the collective signature (E, S) shared by the
given set of m users compute the value R∗ =
Y −EgS mod p.

3) Compute the value E∗ = FH(M‖R∗).
4) Compare the values E∗ and E. If E∗ = E, the collec-

tive DS is valid, otherwise the signature is rejected.

The proposed collective DS protocol works correctly.
Indeed,

R∗ ≡ Y −EgS ≡ Y −Eg
∑m

i=1(ti+xiE)

≡ Y −Eg
∑m

i=1 tigE
∑m

i=1 xi ≡ Y −Eg
∑m

i=1 tiY E

≡
m∏

i=1

gti ≡
m∏

i=1

Ri mod p

⇒ R∗ = R

⇒ E∗ = FH(M, R∗) = FH(M, R) = E.

Since the equality E∗ = E holds, the collective signa-
ture produced with the protocol satisfies the verification
procedure, i.e. the described collective signature protocol
is correct. Security items of the protocol are considered
in the following subsection.

2.3 Attacks on The Collective DS Proto-
col

Let us consider security of the proposed collective DS
protocol based on the discrete logarithm problem. The
participants of the collective DS protocol have significant
more possibilities to attack the protocol than outsiders.
Therefore below there are discussed the following two
types of attacks. The first type corresponds to forgery
of the collective DS. The second type corresponds to cal-
culation of the secret key of one of the signers that shares
a collective DS.

The first attack. Suppose it is given a message M and
m− 1 signers attempts to create a collective DS cor-
responding to m signers owning the collective public
key Y = Y ∗Ym mod p, where Y ∗ =

∏m−1
i=1 Yi mod p,

i.e. m− 1 users unite their efforts to generate a pair
of numbers (E∗, S∗) such that R∗ = Y −E∗gS∗ mod p
and E∗ = FH(M‖R∗). Suppose that they are able
to do this, i.e. the collective forger (i.e. the con-
sidered m − 1 signers) is able to calculate a valid

signature (E∗, S∗) corresponding to collective public
key Y = Y1Y2 · · ·Ym mod p The collective DS satis-
fies the following relation:

R∗ ≡ Y −E∗gS∗ ≡ (Y ∗Ym)−E∗
gS∗

≡ Y ∗−E∗Y −E∗
m gS∗

≡ g∗−E∗
∑m−1

i=1 xiY −E∗
m gS∗

≡ Y −E∗
m gS∗−E∗

∑m−1
i=1 xi mod p

⇒ R∗ = Y −E∗
m gS∗∗ ,

where S∗∗ = S∗−E∗∑m−1
i=1 xi. The collective forgery

have computed the signature (E∗, S∗∗) which is a
valid signature (to message M) of the mth signer,
since E∗ is equal to FH(M‖R∗) and the pair of num-
bers (E∗, S∗∗) satisfies the verification procedure of
the underlying DS scheme. Thus, any successful at-
tack breaking the collective DS protocol also breaks
the underlying DS algorithm. Since it is known
that the Schnorr’s DS scheme is a provably secure
one [6, 10] the proposed protocol is also secure (if
it is not secure, then using the proposed attack two
or more persons are able to forge a signature of the
underlying DS algorithm, i.e. to break Schnorr’s DS
scheme).

The second attack. Suppose that m − 1 signers that
share some collective DS (R, S) with the mth signer
are attackers trying to calculate the secret key of
the mth signer. The attackers know the values Rm

and Sm generated by the mth signer (see the pro-
tocol description). This values satisfy the equation
Rm = Y −E

m gSm mod p, where the values Rm and
E are out of the attackers control, since the value
Rm = gtm mod p, where tm is a random number gen-
erated by the mth signer, and E is the output of the
hash function algorithm. It is supposed that a secure
hash function is used in the protocol, therefore the
attackers are not able to select the value R produc-
ing some specially chosen value E. This means that,
like in the case of underlying Schnorr’s DS scheme,
computing the secret key requires solving the discrete
logarithm problem, i.e. i) to find tm = log Rm and
then compute xm = E−1(Sm − tm) mod q or ii) to
compute xm = log Ym.

In analogous way applying the considered two attacks
to the collective DS protocol described in Subsection 2.1
one can shown that it is as secure as the undelying DS
algorithm based on difficulty of finding the kth roots mod
p is secure.

3 Blind Collective Signature Pro-
tocol

The collective DS scheme proposed in Section 2 can be
used to design on its base the blind collective signature
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protocol that uses the blinding factors Y τ and gε applied
earlier to construct a blind signature scheme based on
Schnorr’s DS scheme [10, 16]. The following scheme is
a variant of the implementation of the blind collective
DS protocols. Suppose some user U is intended to get a
collective DS (corresponding to message M) of some set
of m signers using a blind signature generation procedure.

The following protocol solves the indicated problem.

1) Each signer generates a random value ti < q and
computes Ri = gti mod p, and presents the value Ri

to each of the signers.

2) It is computed the common randomization parameter
as the product R = R1R2 · · ·Rm mod p.

3) The value R is send to user U.

4) User U generates random values τ < q and ε < q.

5) User U computes the value R′ = RY τgε mod p.

6) User U calculates the value E′ = FH(M‖R′) that is
the first parameter of the collective DS.

7) User U calculates the value E = E′ + τ mod q.

8) User U presents the value E to the signers.

9) Each signer using his individual value ti and his se-
cret key xi computes his ”blind” share in the collec-
tive DS: Si = ti + xiE mod q.

10) It is computed the second part S of the blind collec-
tive DS: S = S1 + S2 + · · ·+ Sm mod q.

11) User U computes the second parameter of the collec-
tive DS: S′ = S + ε mod q.

The signature verification procedure is exactly the
same as described in the case of collective DS. The sig-
nature (E′, S′) is a valid collective DS corresponding to
the message M . Indeed, using the collective public key
Y = Y1Y2 · · ·Ym mod p we get

R∗ ≡ Y −E′gS′ ≡ Y −(E−τ)gS+ε ≡ Y −EY τgSgε

≡ g−E
∑m

i=1 xiY τg
∑m

i=1(ti+xiE)gε

≡ RY τgε mod p

⇒ R∗ = R′

⇒ E∗ = FH(M‖R∗) = E′.

Thus, the protocol works correctly and the described
procedure yields the collective DS (E′, S′) that is known
for user U and unknown for each of the signers. The pro-
tocol provides anonymity of the user in the case when the
message M and collective signature (E′, S′) will be pre-
sented to all or to one of the signers. Here it is supposed
that many different users present electronic messages to
some given set of signers for blind signing. Suppose the
signers save in a data base all triples (E, S, R) Produced
by all of the performed blind collective DS procedures.
Let (E1, R1, S1) and (E2, R2, S2) are two of such triples.

Accordingly to the blind collective DS protocol construc-
tion the elements of the first triple satisfy the expression:

R1 = Y −E1gS1 mod p. (1)

The signature (E′, S′) satisfy the expression:

R′ = Y −E′gS′ mod p. (2)

Dividing Equation (2) by (1) we get

R′

R1
= Y E1−E′gS′−S1 mod p,

therefore R′ = R1Y
τgε mod p, where τ = E1 − E′ mod

q and ε = S′ − S1 mod q. Analogously, the signature
(E′, S′) could be produced from the triple (E2, R2, S2), if
the values τ = E2−E′ mod q and ε = S′−S2 are selected
at step 4 of the protocol. Since during the protocol the
values ε and τ are selected at random the signature could
be produced from each of two considered triples as well as
from each of the triple in the data base, i.e. the anonymity
is provided by the proposed protocol.

4 Multi-signature Protocol for Si-
multaneous Signing a Package of
Contracts

Due to fact that individual shares of the collective DS
formed with the protocols described above are valid only
in the frame of the given set of m signers the mentioned
protocols can be used to solve efficiently the problem of
simultaneous signing a contract. However they do not
provide efficient solution of the problem of simultaneous
signing a package of contracts. The last problem consid-
ers the cases when the first subset of some signers should
sign the first document, the second subset should sign the
second document, the third subset should sign the third
document, and so on. Besides, all documents should be
signed simultaneously. Since in such problem we have dif-
ferent documents and different hash functions correspond-
ing to the respective documents, the described above col-
lective DS protocols are not applicable to solve the prob-
lem. However using the idea of the collective DS proto-
cols it is possible to propose the analogous multi-signature
protocol that provides the solution. Such protocol, called
composite DS protocol, uses the collective public key de-
pendent on the set of documents to be signed.

Suppose the parameters p, q, and g as well as the secret
key x and the public key Y = gx mod p are specified
as in the protocol presented in Subsection 2.2. Suppose
the m users should sign m messages Mi, i = 1, 2, · · · ,m,
where to some subsets of the values i correspond the same
messages. For example, if signers α1, α2, · · · , αm′ are to
sign the document M , then Mα1 = Mα2 = · · · = Mαm′ =
M .

For implementing the composite DS protocol there is
used the basic signature scheme characterized in using the
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document-dependent public keys Yh that are computed
from the source public keys Y as follows Yh = Y h mod p,
where h is the hash value computed from the document
to be signed, i. e. h = FH(M). Using the signature
(E, S) the signature verification in the underlying scheme
is performed as follows:

1) It is computed the hash value h from the docu-
ment M to which the current signature corresponds:
h = FH(M), where FH(M) is some specified hash
function.

2) Using the source public key of the signer it is com-
puted the document-dependent public key Yh =
Y hmod p and the value R = Y E

h gS mod p;

3) It is computed the compressed value E∗ from the
value R: E∗ = f(R), where f is some compression
function;

4) The value E∗ is compared with E. If E∗ = E, then
the signature is valid.

The signature generation in the underlying scheme is
as follows:

1) Generate a random number t ≤ q − 1 and compute
the values R = gt mod p and E = f(R), where E is
the first element of the signature;

2) Compute the second element of the signature: S =
t− xhE mod q.

The composite DS protocol looks as follows.

1) Each ith signer selects at random some value ti < q
and computes the randomization factor Ri = gti mod
p, where i = 1, 2, · · · ,m.

2) It is computed the common randomization parameter
R: R = R1R2R3 · · ·Rm mod p.

3) The first element E of the composite DS is computed
using the formula E = f(R), where f is some com-
pression function, for example, f(R) = R mod q.

4) Each of the users computes his share in the composite
DS as follows: Si = ti−Ehixi mod q, where xi is the
secret key of the ith user.

5) The second element S of the composite DS is com-
puted as the following sum: S = S1 + S2 + · · · +
Sm mod q.

The verification procedure of the composite DS is as
follows.

1) Compute the composite public key Y as the prod-
uct of all data-dependent keys of the signers: Y =∏m

i=1 Y hi
i mod p, where hi is the hash function value

computed from the ith document and Yi = gxi mod p
is the source public key of the ith signer.

2) Compute the values R∗ = Y EgS mod p and E∗ =
f(R∗).

3) Compare E and E∗. If E∗ = E, then the composite
DS is valid.

The correctness of the composite DS is proved as fol-
lows:

R∗ ≡ Y EgS ≡ Y Eg
∑m

i=1 Si ≡ Y Eg
∑m

i=1(ti−Ehixi)

≡ Y E

(
m∏

i=1

gti

)(
m∏

i=1

ghixi

)−e

≡ Y ERy−E ≡ R mod p

⇒ E∗ = f(R∗) = f(R) = E.

Any successful attack of the first type considered in
Section 2.3, which breaks the proposed composite DS
protocol, also breaks the underlying DS algorithm. Sup-
pose m − 1 signers can forge the composite DS E∗, S∗

such that there are satisfied the following expressions
R∗ = yE∗gS∗ mod p and E∗ = f(R∗). In this case we
have

R∗ ≡ Y E∗gS∗ ≡ (Y ∗Ym)E∗
gS∗

≡ Y ∗E∗Y E∗
m gS∗ ≡ g∗E∗

∑m−1
i=1 hixiY E∗

m gS∗

≡ Y E∗
m gS∗+E∗

∑m−1
i=1 hixi mod p

⇒ R∗ = Y −E∗
m gS∗∗ ,

where S∗∗ =
(
S∗ + E∗∑m−1

i=1 hixi

)
mod p. This means

that collective forgery have computed the signature
(E∗, S∗∗) which is a valid signature (to message M) of the
mth signer, since the pair of numbers (E∗, S∗∗) satisfies
the verification procedure of the underlying DS scheme.
Thus, any successful attack breaking the collective DS
protocol also breaks the underlying DS algorithm.

Computing the secret key of the mth signer by the m−1
signers sharing a composite signature with the mth signer
requires solving the discrete logarithm problem. This can
be illustrated like in the case of the collective DS protocol
based on Schnorr’s signature scheme (see Section 2.3).

One can propose some scenario of practical application
of the blind composite DS protocols, which justifies inter-
est to such protocols, however we have not succeeded to
construct such protocol using the composite DS scheme
described in this section.

5 Conclusion

A new multi-signature scheme called collective DS pro-
tocol have been constructed using the difficulty of the
discrete logarithm problem. Providing the 80-bit security
the protocol produces 320 bit signature notifying that m
indicated signers (m = 1, 2, 3, · · · ) have signed an elec-
tronic message. Then the designed protocol has been
modified into the blind collective DS protocol. The at-
tractive feature of the proposed protocols is the simul-
taneous procedure of the signature generation. Therefore
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they are efficient as protocols of simultaneous signing con-
tracts. The composite signature protocol can be applied
for solving the problem of simultaneous signing a package
of different contracts by different sets of signers.

It seems that the blind collective DS scheme is at-
tractive for application in the electronic money systems
in which the electronic banknotes are issued by several
banks.

Using the general construction of three proposed pro-
tocols, one can design the collective, blind collective, and
composite protocols applying computations on elliptic
curves (EC) [5, 8, 13]. The EC-based implementation
of the protocols will provide higher performance for given
security value. In future research it is also interesting to
develop analogous collective and blind collective DS pro-
tocols using the DS algorithms recommended by official
standards [2, 4] as the underlying signature generation
procedure.

The composite DS protocol uses specific signature ver-
ification procedure, therefore it is out of the implementa-
tion based on the known standards until new design ideas
will be applied. Designing the composite DS schemes
based on the known standards is an open problem at
present.

Designing a blind composite DS protocol remains an-
other open problem.
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Appendix 1

Below we use the following terms and notations:

The kth residue (non-residue) modp is a value a such
that congruence xk ≡ a mod p has solutions (no so-
lution).

kRp is the set of the kth residues modp;

kNRp is the set of the kth non-residues modp;

[
√

k] means the integer part of
√

k;

ωp(a) denotes the order of the element a modulo p;

ϕ(n) is Euler phi function of n.

The following three facts are well known from elemen-
tary number theory:

1) There exist p−1
k different values aj ∈ kNRp, where

j = 1, 2, · · · , p−1
k , each of which is the kth residue.

2) For some a ∈ kRp it holds a
p−1

k ≡ 1 mod p.
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3) For some value bi ∈ kNRp the congruence

b
p−1

k
i ≡ ei mod p,

where ei = k
√

1 mod p 6= 1 and i = 1, 2, · · · , k − 1,
holds.

Using these facts, it is easy to show that each of the
roots ei defines exactly p−1

k different values bij , where

j = 1, 2, · · · , p−1
k , such that b

p−1
k

ij ≡ ei mod p. Indeed [9],

b
p−1

k
ij ≡ b

p−1
k

ij′ mod p

⇒
(

bij

bij′

) p−1
k

≡ 1 mod p

⇒ bij

bij′
mod p = aj′′ ,

i. e. the ratio bij

bij′
mod p is the kth residue. There exist

exactly p−1
k different values aj′′ , hence there exist exactly

p−1
k different values bij′ . Therefore selecting at random a

value t we have probabilities

Pr
(
t

p−1
k mod p = 1

)
= Pr

(
t

p−1
k mod p = ei

)

for all i = 1, 2, · · · , k− 1. This fact is used while estimat-
ing the complexity of the algorithm described below.

Taking into account that for each i there exists i′ such
that ei′ = e−1

i mod p we can write a
p−1
k2 ei′ ≡ 1 mod p,

therefore

a
p−1
k2 b

p−1
k ≡ aNb

p−1
k ≡ 1 mod p, (3)

where b ∈ kNRp.
If Congruence (3) is fulfilled, then we can easily cal-

culate a root k
√

a mod p. Indeed, Congruence (3) can be
represented as

akb
p−1
k2 k ≡ ak−N mod p, (4)

where with sufficiently high probability we have gcd(k −
N, p − 1) = 1. Suppose that the last relation holds (in
other case the problem is only a bit more complex). Then
it is possible to compute value N ′ = (k−N)−1 mod p− 1.
Therefore we get aN ′kbN ′ p−1

k2 k ≡ a mod p, hence
(
aN ′

bN ′ p−1
k2

)k

≡ a mod p. (5)

Congruence (5) shows that value X = aN ′
bN ′ p−1

k2 mod p
represents one of roots k

√
a mod p. Other k − 1 roots

k
√

a mod p can be computed using the formula eiX mod p,
i = 1, 2, · · · , k−1 (roots k

√
1 mod p can be find computing

the sequence {ε, ε2 mod p, · · · , εk−1 mod p, εk mod p =
1}, where ε is the kth order element modulo p).

A value b ∈ kNRp satisfying Congruence (3) can be
computed as follows. The value b can be represented as
b = bibj mod p, where bi, bj ∈ kNRp:

a
p−1
k2 b

p−1
k

i b
p−1

k
j ≡ 1 mod p

⇒ a
p−1
k2 b

p−1
k

i ≡ b
− p−1

k
j mod p. (6)

The required values bi and bj can be found with high
probability as follows [9]:

1) Select at random a value bi and calculate the value

Ai = a
p−1
k2 b

p−1
k

i mod p. Construct a table with entries
(Ai, bi) for i = 1, 2, · · · , [

√
k] + ∆, where ∆ ¿ [

√
k].

Complexity of this step is O(
√

k) exponentiation op-
erations.

2) Select at random a value bj and calculate the value

Bj = b
− p−1

k
j mod p. Construct a table with entries

(Bj , bj) for j = 1, 2, · · · , [
√

k] + ∆, where ∆ ¿ [
√

k].
Complexity of the second step O(

√
k) exponentiation

operations.

3) Sort the first table by component Ai. Complexity of
this step is O(

√
k · |k|) comparison operations.

4) For j = 1 to [
√

k] + ∆ check if the value Bj is equal
to the value of the first component of some entry in
the first table. Complexity of this step is O(

√
k · |k|)

comparison operations.

This algorithm requires storage for about 4
√

k (i. e.
O(
√

k)) |p|-bit numbers. For randomly selected bi and bj

we have Pr (Ai = Bj) = k−1, therefore in two tables each
of which contains

√
k + ∆ random values with probabil-

ity more than 0.5 there are equal values Ai0 = Bj0 (see
birthday paradox [11]). Thus, with probability about 0.5
the algorithm finds values bi0 and bj0 satisfying Congru-
ence (6). Having such values we can easily compute the
value b = bi0bj0 mod p satisfying Congruence (3) and then
compute X = k

√
a mod p. On the whole complexity of the

algorithm can be estimated as ≈ 2
√

k modulo exponenti-
ation operations. Trying the algorithm several times we
will get value X with probability close to 1. Difficulty of
this procedure is W = O(

√
k). If |k| = 160, then W ≈ 280

exponentiation operations.

Appendix 2

In the case of sufficiently small size of the value p = Nk2+
1 the kth roots from the public key Y can be computed
by means of finding discrete logarithm as follows.

1) Generate a primitive element g modulo p.

2) Calculate logarithm logg Y mod p.

3) Divide logg Y mod p by k (at this step it is get the
value logg

k
√

Y mod p; note that logarithm from Y is
multiple to the value k).

4) Raise the number g to the power z = logg
k
√

Y mod p

and get the value k
√

Y = glogg z mod p.

Let us justify the division operation that is performed
at step 3. The public key Y is computed as Y = Xk mod
p. The last expression can be represented as follows

(
glogg X

)k

≡ gk·logg x ≡ Y ≡ glogg Y mod p,
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i. e. k divides logg Y . For values |p| ≈ 1024 bits difficulty
of finding logarithms is approximately equal to 280 oper-
ations [4].
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