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Abstract

Lagged Fibonacci Generators (LFG) are used as a build-
ing block of key-stream generator in stream cipher cryp-
tography. In this note, we have used the self-shrinking
concept in LFG and given an upper bound 2n+m

8 for the
self-shrinking LFG, where n is the number of stage and
m is the word size of the LFG. We have also shown that
the bound is attained by all the LFGs of degree n < 28,
result supported by experiments.
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1 Introduction

In 1994, Meier and Staffelbach [5] proposed the ’self-
shrinking generator‘, a stream cipher based on irregular
decimation of the output of a linear-feedback shift register
(LFSR), inspired by a related construction (using two reg-
isters) of Coppersmith, Krawczyk and Mansur [3]. Both
the shrinking generator and self-shrinking generator use
the LFSRs and have a simple structure. Despite of this
fact no successful cryptanalytic attack for both generators
has been published so far. In this paper, we have used
self-shrinking concept in LFG and found an upper bound
for the shrunken output sequence. Meier et. al. in their
paper [5] proved that the period of the self-shrunken se-
quence obtained from an m-sequence of an LFSR of length
n is a divisor of 2n−1. Their experiments have shown that
for all m-LFSRs of length n < 20 the self-shrunken se-
quences attain maximum period 2n−1 except for n = 3,
where for the recursion an = an−2 + an−3, the period of
the self-shrunken sequence is 2 instead of 23−1 = 4. In
this paper, it was shown that the for self-shrinking lagged
fibonacci generator, the upper bound which is proved as
2n+m

8 is attained for all the LFGs of length n < 28 includ-
ing n = 3.

This paper is organized as follows: A brief introduction
in Section 1. In Section 2, we will quickly recall the ba-
sic theory of self-shrinking linear feed-back shift register
generators to make the paper self contained. In Section 3,

there will be an analysis of self-shrinking lagged fibonacci
generator. We will give an upper bound of the period of
the output sequence. Finally conclusion in Section 4.

2 Self-Shrinking Linear Feed-back
Shift Register

The self-shrinking generator uses only one LFSR whose
output sequence is shrunken under the control of the
LFSR itself [5]. It may be defined as follows: Let
(s) = s0, s1, · · · be the output of a binary LFSR of
length n. So (s) is an m-sequence of period 2n − 1.
At time k, we consider the pair (s2k, s2k+1) of terms
from the output of the LFSR. If s2k = 1, the term
s2k+1 is output by the self-shrinking generator. If
s2k = 0, no term is output. For example, sup-
pose the output (s) of a primitive LFSR is the sequence
10000010000110001010011110100011100100101101110110
0110101011111 · · · of period 26−1, then the self-shrinking
generator based on the LFSR will output the sequence
00000100100110000111111100101111 · · · .

Below some properties of self-shrunken maximum
length LFSR-sequence will be recalled. The proofs of
given theorems can be found in [5].

Theorem 1. The period P of a self-shrunken maximum
length LFSR-sequence produced by an LFSR of length n
satisfies:

2b
n
2 c ≤ P ≤ 2n−1

Theorem 2. The linear complexity L of a self-shrunken
maximum length LFSR-sequence produced by an LFSR of
length n satisfies:

L ≥ 2b
n
2 c−1

The experimental results, shown by Meier and Staffel-
bach [5], reveal that the period of all self-shrunken max-
imum length LFSR-sequence produced by an LFSR of
length n, attain the bound 2n−1, where n < 20 except
for n = 3. They have also conjectured with the help of
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their experiments that the linear complexity does not ex-
ceed the value 2n−1 − (n + 2), which was proved later by
Blackburn [1] in 1999.

3 Self-Shrinking Lagged Fi-
bonacci Generator

Lagged Fibonacci Generator are used as a building block
of key stream generator in stream cipher cryptography
[4, 6]. The maximum possible period (2n − 1) ∗ 2m−1

of an n-stage lagged fibonacci generator with word size
m, as proved by R. P. Brent [2] in 1994, is attained
if the feed-back polynomial is a primitive trinomial of
degree n > 2 and at least one of the initializations is of
odd value. Full period (2n − 1) ∗ 2m−1 is attained only
by the most significant bit. If the bits are numbered
from 1 (least significant bit) to m (most significant
bit), then bit k has period pk i.e (2n − 1) ∗ 2k−1. So
pm = (2n− 1) ∗ 2m−1. The self-shrinking lagged fibonacci
generator may be defined as follows: Let (s) = s0, s1, · · ·
be the output of an LFG of length n and word size m.
So (s) is an m-sequence of period (2n − 1) ∗ 2m−1 [2]. At
time k, we consider the pair (s2k, s2k+1) of terms from
the output of the LFG. If s2k is odd, the term s2k+1 is
output by the self-shrinking generator. If s2k is even, no
term is output. For example, suppose the output (s) of
a primitive LFG sequence with degree 4 and word size 3 is
32155362010211232355502252477636511362410651636711
5026520372 · · · of period (24 − 1) ∗ 23−1 = 60, then the
self-shrinking generator based on the LFG will output
the sequence 2531502666311022 · · · of period 24+3

8 = 16.
We give below an upper bound of a self-shrinking

lagged fibonacci generator. Our experiments also gives
a strong feeling that the bound is attained for all LFGs.

Theorem 3. The period P of a self-shrunken maximum
length lagged fibonacci generator sequence produced by an
LFG of length n and word size m satisfies

P ≤ 2n+m

8

Proof. We can view a lagged fibonacci generator of length
n and word size m as a scrambler of m LFSRs each of
length n with the same feed-back connection polynomial.
The Ist LFSR corresponds to the 1stbit (least significant
bit) of each of the m-sized word of the LFG. Similarly for
other LFSRs. For all the LFSRs carry bit will be used
as the input to the next LFSRs. Contents(1 or 0) of the
the kth (k = 1, 2, · · · , n) cell of the ith (i = 1, 2, · · · ,m)
LFSR is the ith (i = 1, 2, · · · , m) bit of the kth cell word
of the LFG. The period of the ith (i = 1, 2, · · · ,m) LFSR
is (2n−1)∗2i−1. Within the full period (2n−1)∗2m−1 of
the LFG, the m-sequence of the 1st LFSR (whose period
is 2n − 1) will be repeated 2m−1 times, the m-sequence
of 2nd LFSR (whose period is 2(2n− 1)) will be repeated
2m−1

2 times. Continuing this way the m-sequence of the
m-th LFSR (whose period is (2n − 1) ∗ 2m−1) will occur

once. In each clock an LFG will produce m-bit of output.
As there is a one-one correspondence between {0, 1}m to
Z2m , we can consider each m-bit word as an element of
Z2m (i.e in {0, · · · , 2m − 1}) under the operation modulo
2m. Now applying the self-shrinking concept in the LFG
as described in [5] for LFSR, we will regularly clock the
LFG to get a sequence s = (s0, s1, s2, · · · ) of period (2n−
1) ∗ 2m−1 where si ∈ {0, · · · , 2m − 1} and consider the
sequence of pairs of the values ((s0, s1), (s2, s3), · · · ). If
the first number of the pair is odd take the second number
as the output of the LFG otherwise discard the both.
Now, we can see that odd (even) value in the 1st cell in
the LFG corresponds to an 1 (0) in the 1st cell of the
1st LFSR. Essencially, we can say whenever there is odd
(even)value in the 1st cell of the LFG, there is an 1 (0) in
the 1st cell of the 1st LFSR and conversely whenever there
is an 1(0) in the 1st cell of the 1st LFSR, there is an odd
(even) value in the 1st cell of the corresponding LFG. So
we can establish an one to one relationship between self-
shrunken LFG sequence and the self-shrunken sequence
of the 1st (least significant) LFSR.

In a full LFG period i.e (2n − 1) ∗ 2m−1, 1st LFSR
sequence (whose period is 2n − 1)will repeat 2m−1 times
and it is clear that within consecutive 2(2n − 1) cycles of
the 1st LFSR the self shrunken sequence of the 1st LFSR
will occur once. The maximum period of the self shrunken
sequence of the 1st LFSR is 2n−1 [5], so in 2(2n − 1)
cycles of the LFG output sequence least significant bit
of the self shrunken LFSR sequence occur once and as
least significant bit or the 1st LFSR output bit repeat
2m−1 times in one full period of the LFG, so self-shrunken
sequence of the LFG will repeat after 2n−1 ∗ 2m−1

2 times.
Hence we can say that the maximum period of the self-
shrunken LFG sequence is 2n+m

8 .

4 Conclusions

In this paper we have used the self-shrinking concept to
LFG and gives an upper bound 2n+m

8 for the self-shrinking
lagged fibonacci generator, where n is the number of stage
and m is the word size of the LFG. Our experiments
have shown that the bound is attained by all the LFGs
of degree n < 28, including n = 3, for which [5] shown
that bound is not attained for the self-shrunken LFSR
sequence.
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