
International Journal of Network Security, Vol.11, No.1, PP.23–32, July 2010 23

Nonce Generation For The Digital Signature
Standard

Raj S. Katti and Rajesh G. Kavasseri
(Corresponding author: Raj S. Katti)

Department of Electrical and Computer Engineering
North Dakota State University, Fargo, ND 58105-5285, USA

(Email: {rajendra.katti, rajesh.kavasseri}@ndsu.edu)
(Received Dec. 2, 2008; revised and accepted Feb. 9, 2009)

Abstract

Digital Signature Algorithm (DSA) is an underlying algo-
rithm to form a signature in the Digital Signature Stan-
dard (DSS). DSA uses a new random number (or nonce)
each time a signature is generated for a message. In
this paper, we present a Linear Congruential Generator
(LCG) based approach to generate nonce for DSS. LCG
has been shown to be insecure for nonce generation. If
two message-signature pairs are known along with the pa-
rameters of the LCG used to generate the nonce then the
private key in the signature scheme can be found, with
high probability, by solving three congruences over dif-
ferent moduli. We use a comparison of the output of two
LCGs to generate the nonces and show that our approach
is secure. We also show that coupled multiple recursive
generators which are similar to LCGs are also safe for
nonce generation. Congruences can no longer be set up
to solve for the private key. The advantage of LCG based
schemes for pseudo-random number generation is their ef-
ficiency.
Keywords: Digital signature algorithm, linear congruen-
tial generator, nonce

1 Introduction

In the Digital Signature Standard (DSS) [16], it is recom-
mended that the random number or nonce be obtained
using a pseudo-random generator based on SHA-1 or DES
[4, 8, 9, 10]. However these methods are computationally
intensive. The vulnerability of DSS to lattice based at-
tacks has been studied in [2, 7]. In [2], it is shown that if
the nonce is generated using less computationally inten-
sive methods like Linear Congruential Generators (LCGs)
then the Digital Signature Algorithm (DSA) can be bro-
ken. The secret key can be found when the signature of
two messages is known and their respective nonces are ob-
tained as two consecutive integers generated by an LCG.
This leads to three simultaneous congruences in different

moduli. Such a system can be solved in polynomial time
through a lattice reduction approach using Babai’s near-
est vector algorithm [2]. Additionally, it is shown that
such an attack is applicable even if truncated LCGs are
used for nonce generation. In [7], a similar approach (lat-
tice based reduction using Babai’s algorithm) was used
to recover the secret (or private) key used in the DSS,
provided, a sufficient number of signatures and bits of
the corresponding nonces are known. Hence a weak sys-
tem for nonce generation compromises the security of the
overall scheme, even if the scheme is innately sound.

In this paper, we propose the use of a computation-
ally efficient system namely the comparative or Coupled
LCGs (CLCGs) for nonce generation in DSS. The result is
that lattice reduction based attacks are rendered ineffec-
tive because CLCGs involve the solving of inequalities
modulo m (m is some modulus). We show that solving
such inequalities requires exponential time in the size of
the modulus. Thus CLCGs are a secure, yet inexpensive
method to generate nonces for the DSA. In what follows
we first describe the work in [2] which shows that gener-
ating nonces using a single, or truncated LCG is insecure.
We then describe our new method of generating nonces
in Section 3. In Section 4 we describe why our method is
secure and why lattice methods fail to break the DSA. In
Section 5 we show that the complexity of obtaining the
seed for the new nonce generation procedure of Section 3
is exponential. In this section we also consider a variant
of our procedure for nonce generation and show that it is
insecure. In Section 6 we further improve the generation
of nonces by using coupled multiple recursive generators.
The conclusions are collected in Section 7.

2 Preliminaries

DSS is based on the DSA. We describe the standard and
the underlying DSA below.
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2.1 DSA and LCG

Let p > 2511 be a prime such that the discrete log problem
in Zp is intractable. Let q be a prime such that 2159 <
q < 2160, and q divides (p − 1). Let g ∈ Z∗p be of order
q. Such an element can be chosen as g = h(p−1)/q, where
h is a generator of Z∗p. The private key x is a random
integer such that 0 ≤ x ≤ q − 1, and y = gx mod p. The
public key is given by (p, q, y, g).
A message M is signed as follows. The signer generates
a secret random number k, the nonce, such that 0 ≤ k ≤
q − 1. The signature (r, s) is then given by,

r = (gk mod p) mod q

s = (SHA-1(M) + rx)k−1 mod q. (1)

If r or s is equal to 0, a new random value of k is
chosen. Note that each message has a different value for
k and SHA-1 is a hash function. Verification can be done
by performing the following computations.

u1 = SHA-1(M)s−1 mod q

u2 = rs−1 mod q,

Check if (gu1yu2 mod p) mod q = r.

In this work we assume that the values of SHA-1(M)
can be computed by the forger. Next we define LCGs and
then consider the case when the nonce k is generated by
an LCG.

A LCG is defined by the recurrence (xi+1 = axi +
b mod m), where a, b and m are known and x0 is secret
[14, 21]. The LCG is full period if the period of the se-
quence generated is m. The LCG has a fixed point (this
implies that there exists i such that xi+1 = xi) when
(1− a)−1 mod m exists. When this occurs the maximum
period of the sequence is m − 1, if the fixed point is not
used as an initial condition. The maximum period occurs
when the following conditions are satisfied.

1) b and m are relatively prime.

2) (a− 1) is divisible by every prime factor of m.

3) (a− 1) is divisible by 4 if 4 divides m.

Shamir and Hastad [6] have shown that it is possible
to recover the seed x0 if at least 1/3 of the leading bits of
3 consecutive numbers in the sequence are known. The
problem of recovering the seed has also been considered
in [3, 15].

Let us generate the signatures for two messages M1

and M2. Let the two nonces, k1 and k2, for each message
be generated using two consecutive outputs of an LCG.
Thus k1 = xi, k2 = xi+1 and k2 = ak1 + b mod m. From
Equation (1) we can write,

s1k1 − r1x = SHA-1(M1) mod q

s2k2 − r2x = SHA-1(M2) mod q.

The above two equations along with,

k2 = ak1 + b mod m,

form a system of simultaneous congruences with different
moduli, with unknowns, k1, k2 and x, if messages M1,
M2 and their signatures (r1, s1) and (r2, s2) are known.
The parameters a, b and m of the LCG are also assumed
to be known. The three simultaneous congruences can be
solved using Babai’s nearest vector algorithm and with
high probability the solution yields the secret key x be-
cause the chances of getting a false solution is minimal
if SHA-1(M1) and SHA-1(M2) are random (see Lemma
3.1 of [2]). Since the output of a hash function can be
considered as random, obtaining the correct x is highly
probable.

2.2 Solving the Equations

We now show how the following three equations are solved
in [2].

s1k1 − r1x = SHA-1(M1) mod q

s2k2 − r2x = SHA-1(M2) mod q

−ak1 + k2 = b mod m. (2)

Lemma 3.1 in [2] states that if 1/2 < m/q < 2, the
above system of equations have only a few solutions. We
now briefly discuss the lattice based algorithm to solve
the above system of equations that is given in [2]. For a
survey of lattice based cryptanalysis techniques, refer to
[11, 17]. Let B = {b1, b2, · · · , bn} be a finite set of vectors
in Rn. All integer combinations of the vectors in B form
a lattice denoted by L(B). Finding a vector in the lattice
that is close to a given vector T ∈ Rn, not in the lattice is
called the nearest lattice vector problem. More formally
we want to find a lattice vector Z such that

‖ Z − T ‖= min
V ∈L(B)

‖ V − T ‖ .

Babai’s nearest lattice vector algorithm [1], is a polyno-
mial time approximation algorithm that finds such a vec-
tor Z, given T and B, such that

‖ Z − T ‖≤ c× min
V ∈L(B)

‖ V − T ‖,

where c = 2n/2. To solve the system of Equation (2), we
consider the lattice, L, generated by the columns of the
following matrix.

B =




−r1 s1 0 q 0 0
−r2 0 s2 0 q 0
0 −a 1 0 0 m

γ−1
x 0 0 0 0 0
0 γ−1

k1
0 0 0 0

0 0 γ−1
k2

0 0 0




In the above matrix γx = min(x′,m − x′), and
γk1 = min(k′1,m− k′1) and γk2 = min(k′2,m− k′2) where
(x′, k′1, k

′
2) are guesses for (x, k1, k2). Multiplying the

columns of B by (x, k1, k2) we obtain the following lat-
tice vector.

X = (M1,M2, b,
x

γx
,

k1

γk1

,
k2

γk2

)T . (3)
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From this lattice vector we can obtain the private key
x. Our procedure consists of running Babai’s nearest lat-
tice vector algorithm on L(B) and target vector

T = (M1,M2, b,
x′

γx
,

k′1
γk1

,
k′2
γk2

)T , (4)

and obtaining a lattice vector Z such that

‖ T − Z ‖< δ ‖ T −X ‖,

where δ > 1+c
√

3
2 and c > 2(3+3)/2 (x′, k′1 and k′2 are

guesses for x, k1 and k2 and are in the set D defined be-
low). This follows from the fact that we have 3 equations
and 3 unknowns and Lemmas 4.2 and 4.3 in [2]. In [2]
Babai’s algorithm was used to solve m modular equations
in n variables, each with a different modulus Mi. In their
formulation δ > 1+c

√
n

2 and c > 2(m+n)/2. From Lemma
4.3 of [2] a solution (x, k1, k2) can be found by search-
ing through the entire set D where D = D1 × D2 × D3

and Di = {±(1− (1− 1
δ )j)mi

2 |j = 0, 1, · · · , δ log2
mi

2 } and
δ > 1+23√3

2 . m1 = q, m2 = m3 = m. Therefore the num-
ber of target vectors that need to be tried to guarantee
finding a solution is a polynomial in log2 q and log2 m.
This approach generalizes to truncated LCGs as well. In
the next section, we introduce the proposed model (com-
parative LCGs) for nonce generation and describe its ba-
sic properties.

3 Comparative Linear Congruen-
tial Generators

Inspired by the concept of coupled chaotic maps [18, 19,
20], we propose a comparative LCG (CLCG) which is
defined as follows:

xi+1 = axi + b mod m

yi+1 = cyi + d mod m

zi+1 =
{

1 if xi+1 > yi+1

0 otherwise.

Example 1. Let a = 5, b = 5, c = 5, d = 3, and m =
8. Both sequences, xi and yi have a period of 8 and are
hence full period. If the initial condition (or the seed) is
(x0, y0) = (2, 7), then the sequences are,

{xi} = (7, 0, 5, 6, 3, 4, 1, 2)
{yi} = (6, 1, 0, 3, 2, 5, 4, 7).

The bit sequence zi therefore is

{zi} = (1, 0, 1, 1, 1, 0, 0, 0).

We consider the problem of determining the initial
condition or seed (x0, y0) of coupled LCGs given the
bit sequence {zi}. Note that in the computation of
zi+1, xi+1 and yi+1 are positive integers between 0 and
(m − 1). This is important because computing xi+1 and

yi+1, given zi+1 becomes harder when xi+1 and yi+1 are
restricted to being positive. We assume that a, b, c, d,m
are known and the seed (x0, y0) is secret which leads us
to the following problem.

The CLCG Problem:

Given. a, b, c, d, m and u bits of the output bit sequence,
(z1, z2, · · · , zu), of the coupled LCG system.

Find. The initial condition (x0, y0).

While we present an algorithm to solve the CLCG
problem in Section 5, here, we note a few basic prop-
erties of the CLCG system that are required in the
solution.

It is easy to see that the kth output of an LCG xi+1 =
axi + b mod m, is given as,

xk = akx0 + b

k−1∑

i=0

ai mod m.

This implies that if the kth output of the coupled
LCGs is zk, then the following inequality holds based
on whether zk is 1 or 0.

akx0 + b

k−1∑

i=0

ai mod m > cky0 + d

k−1∑

i=0

ci mod m

if zk = 1

akx0 + b

k−1∑

i=0

ai mod m ≤ cky0 + d

k−1∑

i=0

ci mod m

if zk = 0.

Since u bits of the output zk are known, we can set
up u inequalities Ek, 1 ≤ k ≤ u, where Ek is an
inequality of the form described above.

Example 2. For the coupled LCG system of Example 1,
the inequalities Ek, k = 1, 2, · · · , 7 are,

5x0 + 5 mod 8 > 5y0 + 3 mod 8
x0 + 6 mod 8 ≤ y0 + 2 mod 8

5x0 + 3 mod 8 > 5y0 + 5 mod 8
x0 + 4 mod 8 > y0 + 4 mod 8

5x0 + 1 mod 8 > 5y0 + 7 mod 8
x0 + 2 mod 8 ≤ y0 + 6 mod 8

5x0 + 7 mod 8 ≤ 5y0 + 1 mod 8.

Let Sk denotes the set of solutions (xi, yi) to inequality
Ek. The intersection of all the Sk’s for k ∈ [1, u] gives us
a small set of possible values for the seed.

Example 3. The solution set S1 to the first inequality is,

S1 = {(0, 0), (0, 1), (0, 6), (0, 3), (0, 5), (1, 1), (1, 6), (2, 1),
(2, 6), (2, 3), (2, 0), (2, 5), (2, 2), (2, 7), (3, 1), (3, 6),
(3, 3), (3, 0), (4, 1), (5, 1), (5, 6), (5, 3), (5, 0), (5, 5),

(5, 2), (6, 1), (6, 6), (6, 3)}.
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The intersection of the solution sets for E1 and E2 (the
first two inequalities of Example 2) is given by,

S1 ∩ S2 = {(0, 5), (2, 0), (2, 1), (2, 2), (2, 3), (2, 5),
(2, 6), (2, 7), (3, 0), (3, 1), (3, 3), (4, 1),
(5, 1), (5, 3), (5, 5), (6, 3)}.

The following lemmas, corollaries and theorems about
CLCGs are stated here from [12].

Lemma 1. If two LCGs xi+1 = axi + b mod m and
yi+1 = cyi +d mod m, have full period then the inequality
axi +b ≤ cyi +d mod m has m(m+1)

2 solutions for (xi, yi).

Corollary 1. If two LCGs xi+1 = axi + b mod m and
yi+1 = cyi +d mod m, have full period then the inequality
axi +b > cyi +d mod m has m(m−1)

2 solutions for (xi, yi).

Theorem 1. Let (x0, y0) be a solution for inequality Ei,
then the probability that it is a solution for inequality Ei+1

is 1/2.

Corollary 2. The cardinality of the intersection of the
solution sets of equations E1, E2, · · · , Eu is |S1|

2u−1 .

Theorem 2. The number of consecutive output bits, u,
of the coupled LCGs that must be known in order to de-
termine a unique seed is given by, log2 m(m − 1) ≤ u ≤
log2 m(m + 1).

These results imply that finding the seed to the CLCG
system requires the solution of ≈ m2 log(m) congruences.
We exploit this property in setting up the nonce genera-
tion scheme for DSS as described in the following section.

4 DSA and CLCG

In this section we show that if the nonce in the digital
signature algorithm is generated using a CLCG, the lat-
tice method of [2] (as explained in Section 2.2) cannot
be used to find the secret key. When the CLCG is used
in conjunction with the DSS, the overall system cannot
be described in terms of a set of modular linear equali-
ties, but at best, by a set of modular linear inequalities.
The complexity of a lattice attack in this case is analyzed
and shown to be prohibitively expensive, in contrast to
polynomial complexity obtained with LCGs in [2].

We now propose a scheme where the nonce is obtained
from r consecutive bits of a bit stream sequence that is
generated by the CLCG system.

For cryptanalysis, we make the following assumptions.

A1. As in [2], the cryptanalyst knows a pair
of messages M1,M2 and their corresponding
signature pairs (r1, s1) =DSA(x, k1,M1) and
(r2, s2) =DSA(x, k2,M2). Note that computing
the signature using Equation (1) with private key
x, nonce k1, and message M1 is denoted DSA
(x, k1,M1).

A2. The nonces k1 and k2 (r bits each) are computed
from 2r consecutive bits governed by the CLCG sys-
tem. We also assume that the starting position (in-
dex of the bit stream sequence) is known.

A3. r ≥ log2 m(m + 1) (refer to Theorem 2, which guar-
antees a unique solution (x0, y0) is obtained to the
CLCG system).

A4. The parameters of the CLCG system a, b, c, d and
m are known and the seed (x0, y0) is kept secret.

Let {zi}i=1···m−1 denote one period of the binary bit
stream sequence generated by the CLCG system. Then
the assumptions listed above yield the following set of
equations:

s1k1 − r1x = M1 mod q,

s2k2 − r2x = M2 mod q. (5)

k1 =
r∑

i=1

zi2r−1,

k2 =
2r∑

i=r+1

zi2r−1. (6)

The zi in the equation above is given by the following
equations.

(akx0 + b

k−1∑

i=0

ai) mod m |= (cky0 + d

k−1∑

i=0

ci) mod m,

1 ≤ k ≤ 2r, (7)

zi = 1 if |= is > and zi = 0 if |= is ≤.
Since the seed (x0, y0) is unknown, the binary sequence

{zi} is unknown and hence, a third independent equation
relating k1 and k2 (akin to the third equation in Equa-
tion (2)) cannot be written. Therefore, Equations (5 - 7)
do not readily lend themselves to a lattice formulation.
The only strategy for the opponent in this case is to solve
for the seed (x0, y0) of the CLCG system and verify that
the seed so obtained is consistent across a pair a messages
(M1, M2). This procedure is summarized below.

1) For every one of the 2r possibilities of k1 do the fol-
lowing. Let the bits of k1 be {zi}, i = 1, 2, · · · , r.

a. Using the bits of k1, {zi}, i = 1, 2, · · · , r, solve
the CLCG problem thus obtaining the seed
(x0, y0). This involves solving the following
equations.

(akx0 + b

k−1∑

i=0

ai) |= (cky0 + d

k−1∑

i=0

ci) mod m,

1 ≤ k ≤ r.

If zi = 1 then |= is > and if zi = 0 then |= is ≤.
b. Use this (x0, y0) and the CLCG system (Equa-

tion (7)) to generate 2r bits, {zi}, i = 1 · · · 2r.
Bits {zi}, i = 1, 2, · · · , r represent k1 (these bits
are already known) and bits {zi}, i = r+1 · · · 2r
represent k2.
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c. Substitute these k1 and k2 into Equation (5),
and solve each one of these equations for x.

d. If the x’s calculated in each case are the same
then k1 and k2 are valid solutions to Equa-
tions (5) and (6). In this case stop.

2) Output the valid k1 and k2 that satisfy Equations (5)
and (6).

Instead of checking if x computed by Equation (5),
are the same, one could eliminate x from these two
equations to obtain, k2 = α0 + α1k1, where α0 =
s−1
2 m2 − r2r

−1
1 m1, α1 = s−1

2 r2r
−1
1 s1. Then one could

instead check whether k1 and k2 of Step (b) above sat-
isfy k2 = α0 + α1k1. Since there are 2r possibilities for
k1, the above procedure has to be run at most 2r times
to extract the seed (x0, y0) and the key x. Therefore the
complexity of this procedure is equal to 2r times the com-
plexity of solving the CLCG Problem in Step (a) above.
Therefore, the security of DSS encryption is significantly
strengthened, despite using LCGs for nonce generation.

In the next section, we first give a naive method and
then a lattice based method to solve the CLCG problem.
We find that the lattice based methods are better than the
naive method but both take exponential time. This expo-
nential nature of the CLCG problem implies that break-
ing the DSA that uses CLCG for nonce generation is also
exponential.

5 Solutions to the CLCG Problem

5.1 The Naive Method

In what follows we will show that finding the seed of a cou-
pled LCG system requires an exhaustive search through
the m2 possible choices for the seed (x0, y0). We then con-
sider a variant of our method to generate nonces and show
how Babai’s algorithm can be used to find the private key
of the DSA.

Assume that we are attempting to solve the u inequal-
ities E1, E2, · · · , Eu, for the unique seed (x0, y0), where
m is the modulus in the inequalities. Note that u satis-
fies Theorem 2. Thus we seek (x0, y0) that satisfies the
following inequalities.

(akx0 + b

k−1∑

i=0

ai) mod m |= (cky0 + d

k−1∑

i=0

ci) mod m,

1 ≤ k ≤ u. (8)

Note that if zk = 1 then |= is > and if zk = 0 then
|= is ≤. In the above inequalities we denote ak by ak,
b
∑k−1

i=0 ai by bk, ck by ck and d
∑k−1

i=0 ci by dk, giving us
the following inequalities.

(akx0 + bk) mod m |= (cky0 + dk) mod m,

1 ≤ k ≤ u. (9)

Note that |= is either≤ or > and is defined over positive
integers and the modulus operation results in a positive

integer less than m. One way to solve the inequalities
of Equation (8) is to convert them into equalities and
then to congruences as follows. These inequalities can be
rewritten as an equality as follows.

(akx0 + bk) mod m = ((cky0 + dk) mod m + hk) mod m,

1 ≤ k ≤ u.

In the above equation hk < m. The above equation
can be converted into the following congruences.

(akx0 + bk) ≡ (cky0 + dk) + hk mod m,

1 ≤ k ≤ u. (10)

These congruences now have new unknowns hk, k =
1, 2, · · · , u. Therefore we have u congruences and u + 2
unknowns, (x0, y0, h1, · · · , hu). There is no way to solve
these congruences but to guess two of the unknowns,
say (x0, y0), and then solve for the remaining unknowns,
(h1, h2, · · · , hu). Assume that all the hk are positive. Af-
ter solving for these unknowns, we have to check if the
(h1, h2, · · · , hu), satisfy the original Inequalities (9). If
they do not then it implies that the values chosen for
(x0, y0) were incorrect. The check is performed as fol-
lows.

(akx0 + bk) mod m− (cky0 + dk) mod m

=
{

hk if inequality k is >
hk −m if inequality k is ≤

If the above condition is valid then hk is a valid quan-
tity that makes inequality k of Equation (9) into an equal-
ity. This is illustrated in the example below.

Example 4. For the coupled LCG system of Example 1
the inequalities Ek, k = 1, 2, · · · 7 are,

5x0 + 5 mod 8 > 5y0 + 3 mod 8
x0 + 6 mod 8 ≤ y0 + 2 mod 8

5x0 + 3 mod 8 > 5y0 + 5 mod 8
x0 + 4 mod 8 > y0 + 4 mod 8

5x0 + 1 mod 8 > 5y0 + 7 mod 8
x0 + 2 mod 8 ≤ y0 + 6 mod 8

5x0 + 7 mod 8 ≤ 5y0 + 1 mod 8.

First we convert the above inequalities to the following
congruences.

5x0 + 5 ≡ 5y0 + 3 + h1 mod 8
x0 + 6 ≡ y0 + 2 + h2 mod 8

5x0 + 3 ≡ 5y0 + 5 + h3 mod 8
x0 + 4 ≡ y0 + 4 + h4 mod 8

5x0 + 1 ≡ 5y0 + 7 + h5 mod 8
x0 + 2 ≡ y0 + 6 + h6 mod 8

5x0 + 7 ≡ 5y0 + 1 + h7 mod 8.
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Let us check if (x0, y0) = (0, 0) is a solution to the above
inequalities. When (x0, y0) = (0, 0), (h1, h2, · · · , h7) =
(2, 4, 6, 0, 2, 4, 6). h1 = 2 is a valid solution because

(5x0 + 5) mod 8− (5y0 + 3) mod 8 = 5− 3 = 2 = h1.

Similarly h2 = 4 is not a valid solution because

(x0+6)−(y0+2) mod 8 = 6−2 = 4 6= h2−m = 4−8 = −4.

Therefore (x0, y0) = (0, 0) is not a valid solution for above
inequalities.

It should be noted that the comparison operator is de-
fined over positive integers, which are generated by the
modulus operation in each LCG. This makes the search
for a seed exponential. To appreciate this, consider the
first inequality in Example 1: (5x0 + 5) mod 8 > (5y0 +
3) mod 8. We wish to point out that solutions to this in-
equality cannot be obtained by merely manipulating it to:
5x − 5y + 2 > 0 mod 8. For example, (x, y) = (1, 0) sat-
isfies this inequality while violating (2 < 3) the original
inequality, where the left and right hand sides evaluate
to 2 and 3 respectively. However, (x, y) = (1, 0) can be
made to obey the original inequality if the right hand side
3 is set to −5 mod 8.

Thus a search through the entire solution space is
needed to find the unique (x0, y0) that satisfies Inequal-
ities (9). On the average we will have to try out m2/2
values for (x0, y0) before arriving at the correct solu-
tion, therefore the complexity of the above procedure is
m2/2×Cc, where Cc denotes the complexity of solving u
congruences in u unknowns.

The congruences of Equation (10) all have the same
modulus and can therefore be solved using Gaussian elim-
ination instead of lattice methods, which are usually in-
voked only when the moduli are different. However, the
lattice method can still be used with the CLCG system if
the nonces are chosen to be the differences of the outputs
of the individual LCGs themselves. In this case, three
additional message-signature pairs will suffice to mount
a lattice attack with polynomial complexity, as explained
below.

Suppose the nonces chosen (hk) are given by:

((akx0 + bk)− (cky0 + dk)) mod m = hk, 1 ≤ k ≤ u.

Even though manipulation of the inequalities is forbid-
den, we convert the congruences of Equation (10) to the
following congruences. Such a manipulation may yield
solutions that are incorrect, implying that we must verify
if every solution obtained using these equations satisfies
the original inequalities of Equation (9).

a1x0 − c1y0 − h1 ≡ d1 − b1 = w1 mod m

...
aux0 − cuy0 − hu ≡ du − bu = wu mod m. (11)

In the above equalities ai, bi, ci, di, (w1, w2, · · · , wu)
and m are known and x0, y0, h1, · · · , hu are unknowns. If

three message-signature pairs are known then three more
equations can be set up as follows.

s1h1 − r1x = M1 mod q

s2h2 − r2x = M2 mod q

s3h3 − r3x = M3 mod q. (12)

Note that h1, h2, h3 are the nonces. Therefore, Equa-
tions (11) and (12) form a system of (u + 3) congruences
with (u+3) unknowns x0, y0, h1, · · · , hu, x. From Lemma
3.1 in [2] and since u > log2 m(m + 1), it follows that
these equations have a small number of solutions for the
unknowns. These equations have different moduli and
therefore can be solved using Babai’s nearest vector algo-
rithm. From the preliminaries section we know that such
a method is polynomial in log2 q and log2 m. Therefore
even if Equation (11) have m2 solutions, lattice meth-
ods can be used once again to find the solutions to both
Equations (11) and (12). Thus using such hk as nonces is
insecure.

Our original method generates bits of a nonce by gen-
erating a 1 if (akx0 + bk) mod m > (cky0 + dk) mod m
and a 0 otherwise. This makes it very difficult to use lat-
tice methods for obtaining the secret key in the digital
signature algorithm.

5.2 The Lattice Method

The naive method of the previous sub-section for solv-
ing the CLCG problem results in a time complexity of
O(m2) with memory requirement of O(u) ≈ O(log m)
(for the 2 log m equations that need to be solved). We
now present another method of solving the CLCG prob-
lem that has time complexity of O(m log m) but with a
memory requirement that is greater than a polynomial
in log m. This method works by first converting the in-
equalities in two variables into m sets of inequalities in
one variable, one set for each value of y0. Therefore for
each y0 = 0, 1, · · · , (m − 1) perform the following three
steps.

Step 1.
In this step we obtain u equalities from the m in-
equalities similar to Equation (8). These inequalities
are stated once again below. Let the output of the
CLCG system be zk for k = 1, 2, · · · , (m − 1). The
inequalities corresponding to bits zk are as follows.

(akx0 + bk) mod m |= (cky0 + dk) mod m,

1 ≤ k ≤ (m− 1). (13)

In the above equation, |= is ≤, if the corresponding
output bit zk is 0, and is > otherwise. For each
inequality substitute the current value of y0 = i, 0 ≤
i ≤ (m − 1) and compute the right hand side to
obtain an integer less than m. Then select a set of
u ≥ p(log m) from the above (m − 1) inequalities
such that the right hand side computed is an integer
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close to 0 or m. Here p(log m) is some polynomial in
log m. This results in inequalities similar to one of
the following two inequalities.

(akx0 + bk) mod m ≤ Z

(akx0 + bk) mod m ≥ G. (14)

In the above inequalities Z is an integer close to 0 and
G is an integer close to m. By ”close to” we mean
that Z ≤ p0(log m), and (m−G) ≤ p1(log m), where
p0(log m) and p1(log m) are polynomials in log m.
We can approximate Z and G as 0 mod m resulting
in the following set of equalities that can be solved
using lattice methods. Note that lattice methods are
useful here because Z and G are approximated as 0
to obtain the approximate equations below.

(akx0 + bk) mod m = 0,

0 ≤ k ≤ (u− 1), u ≥ 2 log m.

One of the solutions to the above equations could be
a solution to the inequalities of Equation (14) above.
For this step to have constant time complexity we
need to generate all the inequalities of Equation (13)
in one time unit (thus requiring at most O(m) mem-
ory locations), and then substitute the value of y0 in
the right hand side of these inequalities in order to
obtain Equation (14). If we did this one inequality
at a time then this process would take O(m) time
steps thus requiring a constant number of memory
locations. To confirm this we prove the following
theorem that states that it is not possible to obtain
Equation (14) by scanning only a polynomial number
of inequalities in Equation (13).

Theorem 3. If u = p(log m), a polynomial in log m,
then the number of inequalities of Equation (13) that
have to be scanned before obtaining u inequalities like
in Equation (14) is more than g(log m), where g(·) is
any polynomial.

Proof. Let us assume that we have to compute the
right hand side of q(log m) > u inequalities of Equa-
tion (13) in order to obtain u equations like the ones
in Equation (14) (that is the right hand side is close
to either 0 or m, where q(log m) is a polynomial.
Since the right hand side is an LCG the probabil-
ity of obtaining any integer is 1/m. The probabil-
ity of an LCG output being either Z (close to zero)
or G (close to m) is p0(log m)+p1(log m)

m (p0(·) and
p1(·) are polynomials such that Z ≤ p0(log m) and
(m−G) ≤ p1(log m)). If (p0(log m)+p1(log m))q(log m)

m ≥
1 then with certainty we can say that at least u
out of q(log m) inequalities’ right hand side evalu-
ates to an integer close to 0 or m. This implies that
m ≤ g(log m), where g(·) = (p0(·) + p1(·))q(·). This
contradicts the fact that m cannot be a polynomial
in logm. Therefore we cannot obtain the required

u inequalities by scanning a polynomial number of
inequalities in Equation (13).

Step 2.
In this step we solve the u equalities of Step 1 using
lattice methods. Consider the lattice, L, generated
by the columns of the following matrix.

B =




a1 m 0 · · · 0
a2 0 m · · · 0
...

...
...

au 0 0 · · · 0
γ−1

x0
0 0 · · · 0




In the above matrix γx0 = min(x′0,m − x′0), where
x′0 is a guess for x0. Multiplying the first column of
B by x0 we obtain the following lattice vector.

X = (−b1,−b2, · · · ,−bu,
x0

γx0

)T .

From this lattice vector we can obtain x0. Our proce-
dure consists of running Babai’s nearest lattice vector
algorithm on L(B) and target vector

T = (−b1,−b2, · · · ,−bu,
x′0
γx′0

)T ,

and obtaining a lattice vector Z such that

‖ T − Z ‖< δ ‖ T −X ‖,

where δ > 1+c
√

1
2 and c > 2(u+1)/2 (x′0 is a guess

for x0). This follows from the fact that we have u
equations and 1 unknown and Lemmas 4.2 and 4.3
in [2]. In [2] Babai’s algorithm was used to solve m
modular equations in n variables, each with a differ-
ent modulus Mi. In their formulation δ > 1+c

√
n

2 and
c > 2(m+n)/2.

The time complexity of obtaining x0 is therefore
O(δ log m) and is O(log m) if u is small. Sometimes
Equation (14) can be solved in constant time. To
illustrate this we consider the situation when Z in
this equation is 0. Then the top inequality of Equa-
tion (14) becomes, (akx0 + bk) mod m ≤ 0 implying,
(akx0+bk) mod m = 0, and x0 = −bka−1

k mod m. In
the rest of this work we therefore assume that solving
for x0 takes constant time.

Step 3.
In this step we check if the solutions for (x0, y0) from
Step 2 are correct. x0 was obtained in Step 2 and y0

took on a value before starting Step 1. This (x0, y0)
is the correct solution if it satisfies at least 2 log m
inequalities from Equation (13) (see Theorem 3.5).
If the solution is correct we stop the algorithm. If
the solution is incorrect, we go to the next y0 and
then go back to Step 1. The time complexity of this
step is O(log m).
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We now describe the time and space complexity of
the above algorithm keeping in mind that Steps 1, 2
and 3 are executed m times, once for each value of y0.
Thus the total time complexity is either O(m×log m)
or O(m × (m + log m)) depending on whether the
number of memory locations used is either at most
O(m) or a constant respectively.

5.3 Difficulty of the CLCG problem

We now take a brief look at why the CLCG problem is
difficult. The difficulty of solving the CLCG problem is
linked with the comparison operator. Solving the CLCG
problem requires solving inequalities of the form specified
by Equation (13). One of the best ways of solving these
inequalities is to somehow convert them to equalities or
congruences (such methods have been considered earlier
in this section) and then use lattice-like methods to obtain
the solution. One of the main difficulties in dealing with
inequalities is the fact that there is no ordering over in-
tegers modulo m. This is because x mod m can be both
less than and greater than another integer y. The rea-
son for this is the fact that y and y − m are congruent.
For example 3 mod 11 is less than 10 and greater than
−1 = 10 mod 11.

Another difficulty with an inequality of the form ax +
b mod m > cy + d mod m is the fact that it cannot be
manipulated. This implies that this inequality cannot be
converted to the following, ax+b−cy−d mod m > 0 mod
m. Such a conversion would lead to incorrect solutions for
(x, y) as we have noted earlier in this section.

Lastly we note that lattice methods for solving modular
equalities lead to exponential complexity in the input size
(log m is the input size).

In the following section, we demonstrate how the cou-
pled LCG system can be extended to enhance the security
of the DSS algorithm further.

6 Multiple Recursive Generators

Recall that a multiple recursive generator (MRG) (see
[5, 14, 22]) is defined by:

xn = a1xn−1 + · · ·+ akxn−k mod m,

where ai ∈ Zm. Such generators have a period of mk − 1
if and only if m is prime and the polynomial P (z) =
zk − a1z

k−1 − · · · − ak is primitive [14]. We can form a
coupled multiple recursive generator (CMRG) to generate
a bit sequence as follows.

xn = a1xn−1 + · · ·+ akxn−k mod m

yn = b1yn−1 + · · ·+ bkyn−k mod m

zn =
{

1 if xn > yn

0 otherwise.

In the above setting ai and bi are chosen such that the
multiple recursive generators xi and yi have period mk−1.

Here the seed for the coupled system is (x0,y0) where
x0 = (x01, x02, · · ·x0k) and y0 = (y01, y02, · · · y0k).

Let every r consecutive bits of zn be chosen as a nonce
for DSA. Again no lattice formulation is possible in order
to obtain the private key in the DSA. The only way to
break the DSA then is to first obtain the seed of the cou-
pled MRG, with no known zn. In order to obtain a unique
seed at least log2m

2k bits of zn must be known (this is
similar to Theorem 3.5 for LCGs). Since log2m

2k can be
very large compared to the size of a nonce, we will have
to guess several nonces to obtain enough bits of zn and
then solve for the seed. Thus the procedure of Section 4
can still be used but Step 1 will have to be modified to:

1) For every one of the 2s possibilities of several nonces,
such that s > log2m

2k do the following. Let the bits
of these nonces be {zi}, i = 1, 2, · · · , s.

Lattice algorithms can once again be used if the nonces
are the hk defined by the equations below.

((a1i
x01 + a2i

x02 + · · ·+ aki
x0k) mod m

−(b1i
y01 + b2iy02 + · · ·+ bkiy0k) mod m) mod m

= hi, 1 ≤ i ≤ s.

In the above equation s > log2m
2k. If 2k + 1 message-

signature pairs are known then the following new congru-
ences can be formed.

a1ix01 + a2ix02 + · · ·+ akix0k

−(b1iy01 + b2iy02 + · · ·+ bkiy0k)− hi

≡ 0 mod m, 1 ≤ i ≤ s. (15)

s1h1 − r1x = M1 mod q

s2h2 − r2x = M2 mod q

...
s2k+1h2k+1 − r2k+1x = M2k+1 mod q. (16)

Equations (15) and (16) form a system of 2k+s+1 con-
gruences in different moduli with 2k + s + 1 unknowns,
(x0,y0), (h1, h2, · · · , hs), x. Once again these equations
have a small number of solutions that can be found
with Babai’s nearest vector algorithm in polynomial time.
Even though solving Equation (15) for the seed requires
an exponential amount of time, using hi as the nonces is
insecure.

If we use O(mk) memory locations then using the
method of Section 5.2, the time complexity of finding
the seed for CMRGs can be reduced to O(mk(δ log m)k),
where δ = 1+2(k+u)/2√k

2 . Here u is small (a polynomial in
log m) and is the number of equations in x0 that need to
be solved for a given value of y0. Also, Step (1) in the
procedure of Section 4 requires a larger search space than
the CLCG case. Thus coupled multiple recursive genera-
tors are better than coupled LCGs for nonce generation,
but come at the expense of extra computation.
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7 Conclusion

We have shown that coupled LCGs are good candidates
for nonce generation in the digital signature standard in
terms of both security and computational efficiency. The
weaknesses of a single LCG are removed by the coupling.
This is primarily because solving inequalities modulo m
is an exponential operation in the size of m. We show
that the only way to break the digital signature algo-
rithm when coupled LCGs are used is to first solve the
CLCG problem (that is find the seed for the CLCG) and
then find the private key if two message-signature pairs
are known. We also show that the lattice based algorithm
to break the coupled LCGs has a complexity of O(n2n),
where m = 2n. However we cannot achieve this with an
amount of memory that is polynomial in n. Therefore the
task of breaking coupled LCGs is computationally infea-
sible for large m. Using coupled multiple recursive gen-
erators makes nonce generation more secure because the
seed space is m2k as opposed to m2 in the CLCG case.
Finally we have shown that lattice based methods are
rendered useless if the random numbers needed in a digi-
tal signature scheme are generated using our new coupled
LCG scheme. The methods of this paper can easily be ex-
tended to non-LCGs. The methods of this paper can also
be used to generate pseudo-random bit sequences that
can be used for other applications. We end with a brief
description of the efficiency of our method. The proposed
LCG consists of two independent LCGs and a compara-
tor. To produce one bit of the nonce, this requires two
modular multiplications, and two modular additions and
a comparison operation. However, choosing a modulus
that is a power of 2, reduces this to only 2 shifts, 2 ad-
ditions, and a comparison operation [13]. The original
LCG has only one LCG and is therefore more efficient
but not secure. Other nonce generation procedures use
either SHA-1 or DES/AES. Both these methods consist
of performing several rounds of complicated operations
and are therefore less efficient than the proposed method.
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