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Abstract

This paper deals with a modification of the Hill cipher.
In this, we have introduced interweaving in each step of
the iteration. The interweaving of the resulting plaintext,
at each stage of the iteration, and the multiplication with
the key matrix leads to confusion and diffusion. From
the cryptanalysis performed in this investigation, we have
found that the cipher is a strong one.
Keywords: Interweaving, inverse interweaving, modular
arithmetic inverse

1 Introduction

In the literature of cryptography, it is well known that,
confusion and diffusion play a vital role in the develop-
ment of a cipher [3, 4, 5]. The transposition or permuta-
tion of characters in the plaintext is responsible for con-
fusion, and the influence of each bit of the key on each
plaintext bit causes diffusion.

The study of the classical Hill cipher [12], in which, a
matrix containing numbers is used as a key in the encryp-
tion process, and the modular arithmetic inverse of the
key is employed in the decryption process, has attracted
the attention of several researchers [6, 7, 8, 9, 10, 11] in
the recent years. In the Hill cipher, the basic steps of
encryption and decryption are given by

C = PK mod 26,

and

P = K−1C mod 26,

where P is the plaintext, K the key matrix, C the cipher-
text and K−1 is the modular arithmetic inverse of K.
Here, he has taken mod 26, as he focused his attention on
the 26 characters of English alphabet.

Subsequently, Feistel [2] analyzed the general princi-
ples of block ciphers and lead to the development of Data

Encryption Standard (DES). In this, the length of the
key is 56 bits, and the length of the plaintext block is 64
bits. In DES, as the length of the key is only 56 bits, it
is found that this cipher is breakable with a good deal of
effort by brute force attack. In view of this fact, several
variants, of DES, such as 2DES and 3DES came into exis-
tence. However, these are found to be relatively sluggish
in software. In the light of this, at the end of the last
century, Joan Daeman and Vincent Rijman developed an
algorithm called Advanced Encryption Standard (AES).
In this, the block length is 128-bit and the key length is
128, 192 or 256 bits. This cipher is found to be a strong
one.

In a recent investigation [7, 10], we have used a new
concept called interlacing, and modified the Hill cipher.
In the process of interlacing, mixing of binary bits is car-
ried out in a row wise manner, i.e., binary bits of the
elements of each row are separately mixed. This process,
included in each iteration, strengthens the cipher.

In the present paper, we modify the Hill cipher by in-
troducing interweaving (transposition of the binary bits
of the plaintext characters belonging to the neighboring
rows and columns) and iteration. In this, the multiplica-
tion of the plaintext with the key matrix, the interweaving
and the iteration cause a lot of diffusion and confusion.
Here, our objective is to develop a strong block cipher,
whose key length is significantly large.

In Section 2, we present the development of the ci-
pher. We design the algorithms for encryption, decryp-
tion, modular arithmetic inverse, interweaving, and in-
verse interweaving in Section 3. In Section 4, we illustrate
the cipher with an example. We discuss the cryptanalysis
in Section 5, and mention the avalanche effect in Section
6. Finally, in Section 7, we draw conclusions from the
computations carried out in this analysis.
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2 Development of the Cipher

Consider a plaintext P of 2n characters. By using the
ASCII code, let us represent P in the form of a matrix,
given by

P = [Pij ], i = 1 to n, j = 1 to 2.

Let K = [Kij ], i = 1 to n, j = 1 to n, be the key
matrix, in which all the elements are less than 128. The
process of encryption can be described by the following
equations.

P0 = P,

P i = < KP i−1 mod 128 >, i = 1 to N,

C = KPN mod 128.

Here, <> denote interweaving of the resulting matrix
in a column wise and a row wise manner and C is the
ciphertext.

The process of decryption is governed by the relations

PN = K−1C mod 128,

P i−1 = > K−1P i mod 128 <, i = N to 1,

P = P 0.

In this, >< denotes the reverse process of interweaving
and K−1 is the modular arithmetic inverse of K.

The process of interweaving can be described as fol-
lows.

Let [Qij ], i = 1 to n, j = 1 to 2 be the transformed
plaintext matrix obtained after performing the multipli-
cation with the key matrix and taking mod 128. On con-
verting each element of [Qij ] into binary form, we get a
new matrix

[bil], i = 1 to n, l = 1 to 14.

Thus we have [bil] =




b11 b12 · · · b114

b11 b11 · · · b214

· · · ·
bn1 bn2 · · · bn14




We rotate the first column and see that it assumes
the form [b21, b31, · · · bn1, b11]

T , where T denotes the
transpose of the vector. Here, each element has gone one
step up and the first element has come down to the last
position. This process is carried out for columns 1, 3, 5
and so on. Similarly, we carry out a circular left shift of
the rows numbered 2, 4, 6, · · · etc. After carrying out
the aforementioned steps, the matrix assumes the form

[bil] =




b21 b12 b23 · · · b213 b114

b22 b33 b24 · · · b214 b31

· · · · · ·
· · · · · ·
· · · · · ·

bn2 b11 bn4 · · · bn14 b11




Then we construct the modified plaintext matrix P
wherein, the elements of the first column of P are ob-
tained from the first seven columns of [bil], and the second
column of P from the subsequent seven columns of [bil].

Figure 1: Schematic diagram of the cipher

This completes the process of interweaving. We denote
the reverse process of interweaving as inverse interweav-
ing.

The schematic diagram of the cipher is given in Fig-
ure 1. This shows the processes of the encryption and the
decryption in detail.

3 Algorithms

The algorithms describing encryption, decryption, modu-
lar arithmetic inverse, permutation, interlace, inverse per-
mutation and decompose are given below.

3.1 Algorithm for Encryption

1) read n, N , K, P ;

2) P0 = P ;
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3) for i = 1 to N {
P i = KP i−1 mod 128;
interweave();
}

4) C = KPN mod 128;

5) write C;

3.2 Algorithm for Decryption

1) read n, N , K, C;

2) find modinverse(K);

3) PN = K−1C mod 128;

4) for i = N to 1 {
invinterweave();
P i−1 = K−1Pi mod 128;
}

5) P= P0;

6) write P ;

3.3 Algorithm for Modinverse

1) read n, K;

2) find Kij , ∆; /* Kij are cofactors of the elements of
K, and 4 is the determinant of K */

3) find d such that (d4) mod 128 = 1;/* d is the mul-
tiplicative inverse of 4 */

4) K−1 = (Kjid) mod 128;

3.4 Algorithm for Modinverse

1) read n, K;

2) find Kij , 4; /* Kij are the cofactors of the elements
of K, and 4 is the determinant of K */

3) find d such that (d4) mod 128 = 1;/* d is the mul-
tiplicative inverse of 4 */

4) K−1=(Kjid) mod 128;

3.5 Algorithm for Interweave

1) convert P i into binary bits;

2) construct [bij ], i = 1 to n, j = 1 to 14;

3) for j = 1 to 14 in Step 2 {
k = b1j ;
for i = 1 to n− 1
{
bij = b(i+1)j ;
}
bnj = k;
}

4) for i = 2 to n in step 2 {
k = bi1;
for j = 1 to 13 {
bij = bi(j+1);
} bi14 = k; }

5) Construct Pi from bij ;

4 Illustration of the Cipher

Consider a plaintext given below.
The development of the nuclear technology of all the devel-
oped countries must be watched carefully by a super com-
mittee consisting of representatives of all the countries.
This ensures the safety of all the nations if and only if a
resolution is taken in this direction.

Let us focus our attention on the first sixteen charac-
ters given by “The development”.

On substituting ASCII codes for these characters, and
arranging them in the form of a matrix, we get

P =




84 109
104 111
101 112
32 109
100 101
101 110
118 116
101 32




(1)

Let us take the key matrix K as

K =




53 62 124 33 49 118 107 43
45 112 63 29 60 35 58 11
88 41 46 30 48 32 105 51
47 99 36 42 112 59 27 61
57 20 6 31 106 126 22 125
56 37 113 52 3 54 105 21
36 40 43 100 119 39 55 94
14 81 23 50 34 70 7 28




On multiplying the plaintext matrix with the key ma-
trix, we get the modified P , denoted by P 1, as

P 1 =




27 112
17 83
83 113
108 41
37 25
38 86
59 61
127 11




On converting the numbers in these two columns into
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binary form and constructing the matrix b, we get

b =




0 0 1 1 0 1 1 1 1 1 0 0 0 0
0 0 1 0 0 0 1 1 0 1 0 0 1 1
1 0 1 0 0 1 1 1 1 1 0 0 0 1
1 1 0 1 1 0 0 0 1 0 1 0 0 1
0 1 0 0 1 0 1 0 0 1 1 0 0 1
0 1 0 0 1 1 0 1 0 1 0 1 1 0
0 1 1 1 0 1 1 0 1 1 1 1 0 1
1 1 1 1 1 1 1 0 0 0 1 0 1 1




On performing interweaving (see Section 2), we get the
transformed b as

b =




0 1 0 0 0 1 1 1 1 0 0 0 1 0
0 0 1 0 0 1 1 1 0 1 0 0 1 1
1 1 1 0 0 1 0 1 0 0 0 0 1 1
1 1 0 0 1 0 0 0 1 1 1 0 0 1
1 0 0 1 1 1 1 0 1 1 1 0 0 0
0 1 0 1 1 1 0 0 0 1 0 1 1 1
1 1 1 0 1 1 0 1 0 1 0 0 1 0
1 0 1 1 1 1 1 1 0 1 1 0 1 0




We now convert these binary bits into decimal numbers
and construct the modified P as

P 1 =




35 98
19 83
114 67
100 57
79 56
46 23
118 82
95 90




After carrying out all the sixteen rounds, we get the
ciphertext in the form

C =




114 8
100 65
56 81
71 24
8 81
37 4
0 73

117 99




(2)

The modular arithmetic inverse of K, denoted by K−1,
is obtained as

K−1 =




35 46 15 49 89 0 77 16
1 126 107 112 15 51 50 69
7 49 24 28 96 38 117 44
76 111 44 75 78 98 36 73
33 91 27 6 6 49 27 72
25 114 56 102 99 88 27 92
48 101 23 112 39 35 39 94
71 55 69 18 106 30 63 85




It is to be noted that the modular arithmetic inverse of
the key matrix K exists only when K is nonsingular and
the determinant of K is relatively prime to 128. It can be

readily verified that KK−1 mod 128 = K−1K mod 128 =
I.

On taking the C given in Equation (2), and applying
the decryption process, we get the PN as

PN =




5 107
2 93
96 58
24 56
125 115
16 104
41 32
47 40




On applying the inverse interweaving process de-
scribed in Section 2, we get the modified PN as

PN =




106 32
2 93
18 93
48 61
92 56
58 121
20 64
5 120




After carrying out all the sixteen iterations, we get
the plaintext in the form

P =




84 109
104 111
101 112
32 109
100 101
101 110
118 116
101 32




This is the same as the plaintext given in Equation (1).

5 Cryptanalysis

In the case of the Hill cipher, we have a direct relation
between the plaintext P and the ciphertext C, where P
and C are column vectors. This relation is given by

C = KP mod 26.

On using the known plaintext and ciphertext pairs, we
can write an equation of the form

X = KY mod 26, (3)

where Y is the plaintext matrix, and X is the ciphertext
matrix.

From Equation (3), we can write

K = XY −1 mod 26.
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Thus, the Hill cipher is broken.
In the case of the present cipher, as the interweaving

and the iteration hinder obtaining a direct relation be-
tween the plaintext and the ciphertext, this cipher cannot
be broken by the known plaintext attack.

Let us now consider the brute force (ciphertext only)
attack. As the length of the plaintext block is sixteen
characters, i.e., 112 binary bits, the space of the plaintext
is 2112 ≈ 1033.6. As the computation of the ciphertext
in all these possible cases is unwieldy, brute force attack,
in this way, is ruled out. In this cipher, the key matrix
is of size n × n, and each element of the key matrix lies
between 0 and 127. Thus, the size of the key space is
27n2

. Identifying this key matrix by brute force attack is
totally prohibitive when n ≥ 4. Thus the cipher cannot
be broken by this attack.

The rest of the approaches such as chosen plaintext at-
tack and chosen ciphertext attack are also impossible as
the interweaving and the iteration lead to a lot of confu-
sion and diffusion.

Hence, this cipher is a very strong one and it cannot
be broken by any cryptanalytic attack.

6 Avalanche Effect

The plaintext given in (1) can be represented in its binary
form as

101010011011001101000110111111001
011110000010000011011011100100110
010111001011101110111011011101001
1001010100000. (4)

On changing the 9th character from l to m, the mod-
ified plaintext (in its binary representation) assumes the
form

101010011011011101000110111111001011
110000010000011011011100100110010111
001011101110111011011101001100101010
0000. (5)

It may be noted that the plaintexts given in Equa-
tions (4) and (5) differ by exactly one bit.

The cipher text corresponding to the plaintext given in
Equation (4) is

11100101100100011100010001110001000010
01010000000111010100010001000001101000
100110001010001000010010010011100011. (6)

The ciphertext pertaining to the plaintext given in
Equation (5) can be obtained as

000000101000100001110001000001111101000
010011000111110101111100001000010000110
0010111100011011111000000111100101. (7)

It can be readily seen that the ciphertexts given in
Equations (6) and (7) differ by 57 bits, which is very sig-
nificant.

We now change the key element K36 from 32 to 33.
With this change, the original key and the modified key
differ by exactly one bit. On applying the modified key
on the original plaintext, given in Equation (1), we get
the ciphertext as

01011001001001100001110001101010010101
10011001110010110000000100101100010000
001000010110001001111010100110011000. (8)

It can be noticed that the ciphertexts given in Equa-
tions (6) and (8) differ by 62 bits, which very substantial.

From the above discussion, we conclude that this cipher
produces strong avalanche effect and hence the cipher is
a strong one.

7 Computations and Conclusions

In this paper, we have developed a block cipher by intro-
ducing interweaving and iteration. As the interweaving is
done in each step of the iteration, the plaintext has un-
dergone several transformations before it has become the
ciphertext. The cryptanalysis and the avalanche effect
have fully indicated that the cipher is a very strong one
and it cannot be broken by any cryptanalytic attack.

The algorithms presented in this paper for encryption
and decryption are implemented in C language.

The modular arithmetic inverse of the 8× 8 matrix is
calculated by using the systematic procedure developed
in [6].

The ciphertext corresponding to the entire plaintext
given in Section 4 is presented below in hexadecimal
notation.

E591C4710940751106898A2124E3748
854D546D204894FFC5EDA5055E8737
89485440D23B6A7989668A72A6BDC
F7BCFB82315BAEC7D8429E0EBAD
C4B04D242F5264C45BD452EE5512F7
74EEE9BCDC0B1C3E4B76EC4173BC
14AFCD853E3922818165D3037C198D
1743381A79A1A24C058B843A13D67
C13CBFD585E2450EE495EA8081A4D
4F37FBD1CF7C898B7.

The time required for encryption and decryption of the
plaintext given in Section 4 is 6.1∗10−3 and 12*10−3 sec-
onds respectively. The cipher developed in this analysis
is a potential one and it is quite comparable with all the
other block ciphers existing in the literature.

The analysis presented in this paper can be extended to
the case, wherein the plaintext block is enormously large.
This problem is considered in the ensuing paper.
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