
International Journal of Network Security, Vol.10, No.2, PP.107–113, Mar. 2010 107

Computing the Modular Inverse of a Polynomial
Function over GF (2P) Using Bit Wise Operation

Rajaram Ramasamy and Amutha Prabakar Muniyandi
(Corresponding author: Rajaram Ramasamy)

Department of Computer Science and Engineering, Thiayagarajar College of Engineering
Thiruparankundram, Madurai, Tamil Nadu, India, 625 015, India (Email: rrajaram@tce.edu)

(Received May 26, 2008; revised Dec. 4, 2008; and accepted Feb. 10, 2009)

Abstract

Most public key crypto systems use finite field modulo
arithmetic. This modulo arithmetic is applied on real
numbers, binary values and polynomial functions. The
computation cost is based on how it works with minimum
use of scarce resources like processor and memory We have
implemented the determination of the multiplicative in-
verse of a polynomial over GF (2p) with minimum com-
putational cost. The “Extended Euclidean Algorithm”
(EEA) has been demonstrated to work very well manually
for integers and polynomials. However polynomial manip-
ulation cannot be computerized directly. We have imple-
mented the same by using simple bit wise shift and XOR
operations. In small applications like smart cards, mo-
bile devices and other small memory devices, this method
works very well. To the best of our knowledge, the pro-
posed algorithm seems to be the first, efficient and cost
effective implementation of determining the multiplicative
inverse of polynomials over GF (2p) using computers. As
this is a pioneering work, the results could not be com-
pared with that of any previous work.
Keywords: Advance encryption standard, extended Eu-
clidean algorithm, multiplicative inverse

1 Introduction

Euclid proposed an algorithm to determine the multi-
plicative inverse of polynomials over GF (Zp) [1, 5, 14].
In modern cryptography, finite fields and number the-
ory play a major role. Some basic operations in finite
field are essential to develop encryption algorithm like Ad-
vance Encryption Standard [6] and ECC [11]. Advanced
Encryption Standard largely relies on S-Box values to in-
troduce non-linearity in the encryption process. Using a
row and a column value, expressed in Hexadecimal nota-
tion, accesses an element of the S-Box. The hexadecimal
integer is representative of a character in a message to
be encrypted. Evaluation of the corresponding elemental
value of the S-Box is quite a circumlocutory process.

The integer is first expressed as a polynomial in x, say,
95H = 10010101 −→ x7 +x4 +x2 +1. Then its multiplica-
tive inverse in GF (28) is determined. The polynomial
to represent GF (28) is a carefully selected prime num-
ber in the range of 28 to 29. Say, 283=100011101 −→
x8 + x4 + x3 + x + 1. This is called an irreducible poly-
nomial [8, 14]. It is so chosen such that it has a unique
multiplicative inverse. Then we apply the Extended Eu-
clidean Algorithm (EEA) to these polynomials to evaluate
the multiplicative inverse. This means, we have to deter-
mine the multiplicative inverse of x7 + x4 + x2 + 1 with
respect to x8 + x4 + x3 + x + 1. Manual operation on the
EEA is quite easy and straightforward. But how do we
implement the process by using computers? This is what
this paper does. It proposes an algorithm, which imple-
ments it efficiently and cost effectively. It implements the
algorithm in C/C++ for two different cases. This is the
first attempt at proposing an algorithm to determine the
multiplicative inverse of a polynomial over the GF (28) fi-
nite plane. Therefore the results got through this method
could not be compared with past works.

We organize this paper as follow: In Section 2 papers
that have appeared on this topic are surveyed. In Section
3, the proposed algorithm is explained. Section 4 defines
the problem. Section 5 defines the proposed algorithm.
Section 6 implements the proposed method. Section 7
gives the concluding remarks and discusses future scope
of this problem.

2 Related Work

Stallings [14] has used the Extended Euclidean Algorithm
to solve linear Diophantine equations, GCDs, and module
inverses. Ever since Diffie and Hellman [3] developed the
prototype of modern cryptography; most public key cryp-
tosystems are based on finite fields with modular arith-
metic constituting basic operations. Modular multipli-
cations, modular exponentiations, and modular inverses
are performed in RSA cryptosystems [13], the US Gov-
ernment Digital Signature Algorithm [10], the Diffie Hell-

International Journal of Network Security, Vol.10, No.2, PP.107–113, Mar. 2010 108

man Key Exchange Scheme [10]. Among the basic opera-
tions [4, 7], computing modular inverses involving polyno-
mials is the most complex. This has engaged the attention
of many researchers [1, 2, 9, 15].

In 1997, Calvez et al. [1] proposed a variation on the
Euclidean Algorithm, which determines the greatest com-
mon divisors (GCDs) and inverses of polynomials. In
2004, Goupil and Palicot [5] introduced another variation
on this algorithm to reduce the number of operations to
a large extent. Inspired by their work, Liu [9] proposes
a variation on the EA, which uses only simple modulo
operators (subtraction operations), to compute the mod-
ular inverses. This variant only modifies the initial values
and the termination condition of the EA. Therefore it is
as simple as the EA. However one drawback is that the
input of this variant is twice the size of bit length as the
input of the EA.

Liu’s algorithm only deals with number system [9]. It
is not applicable for polynomial functions. Polynomials
with coefficients other than 1 are difficult to implement
in computers [9]. The reason for this is due to occurrence
of some negative or fractional value coefficients. The pro-
posed algorithm is based on polynomials with 1 or 0 as
coefficients such as x7 + x5 + x3 + x + 1.

In 1997, the American Government [1] decided to re-
place DES with an efficient encryption algorithm. The
National Institute of Standards and Technology (NIST)
announced a common note to cryptographers for devel-
opment of a new algorithm. Earlier the DES was de-
veloped using Federal encryption standard. In January
1997 NIST solicited a new symmetric algorithm based
on 128-bit block of message using 128−, 192−, 256−bit
keys. Cryptographers from different parts of the world
submitted their proposals. Fifteen of these proposals met
the NIST specifications. Based on this, NIST organized
a conference to deliberate on all the proposed methods.
After nineteen months of evaluation, NIST recommended
five algorithms like MARS, RC6, Rijndael, Serpent, and
Twofish. Then after one year of study, in October 2000,
National Institute of Standard and Technology recom-
mended the Rijndael algorithm as best suited for AES.
The Rijndael algorithm is combination of security, per-
formance, efficient, implement ability, and flexibility. Af-
ter one more year of evaluation, in November 2001, the
Department of Commerce officially declared Rijndael al-
gorithm as the de facto Advance Encryption Standard.

3 Problem Description

In the field of information security some of the security al-
gorithms are designed by using the finite field GF (2p) [2].
AES and ECC are the two important encryption tech-
niques that use algorithms based on finite field arithmetic.
The finite field GF (2p) is representative of a polynomial
function with respect to one variable x, as follows:

GF (2p) = xp−1 + xp−2 + · · ·+ x2 + x1.

For example, GF (23) = x2 + x + 1.
The above-mentioned GF (23) is finite field with re-

spect to 3. In AES, the S-box generation is designed by
using irreducible polynomial in GF (28). The strength of
the AES is dependent on the non-linearity introduced in
evaluating the S-Box values.

Suppose we want to generate S-box value for 2A with
respect to GF (28) = x8 + x4 + x3 + x + 1. First, we have
to determine the multiplicative inverse of 2A in GF (28).
2A in binary form is 0010 1010, which in polynomial rep-
resentation in x is (x5 + x3 + x). In manual procedure
the Extended Euclidean Algorithm or its shortened ver-
sion can be directly applied to polynomials to evaluate
the multiplicative inverse.

The multiplicative inverse of 2A(00101010), expressed
as a polynomial (x5 + x3 + x), over GF (28) is calculated
manually using the abridged Euclidean Algorithm [1].

The manual operation shows that the multiplicative
inverse of (x5 + x3 + x) over (x8 + x4 + x3 + x + 1) is
(x7 + x4 + x3).

In general terms this algorithm determines multiplica-
tive inverse of B(x) modulo M(x), if the degree of B(x)
is less than the degree of M(x); or alternatively we say
that gcd[M(x), B(x)] = 1. If M(x) is an irreducible poly-
nomial, then it has no factor other than itself or 1, so that
gcd[M(x), B(x)] = 1.

However the computer cannot be coded to deal with
these polynomial functions straightaway. They need to
be handled in an indirect way. This paper proposes the
technique to manipulate polynomials by the Extended
Euclidean Algorithm.

4 Proposed Algorithm

In our proposed method, we have converted the poly-
nomial function into decimal and its equivalent binary
values. Both number systems figure in the computations.
The proposed algorithm is given below.

Procedure Multiplicative Inverse ((A3[], B3[]))

1: Binary value A3[], B3[]
2: Begin
3: C1 = 0; A2 = 0; B2 = 0;
4: while (B3 > 1) //Step 1 do
5: Q= 0;
6: Temp = B3;
7: do
8: Q1 = 1;
9: do

10: B3 = B3 <<LinearLeftShift

11: Q1 = Q1 ∗ 2;

12: until(A3MSB==B3MSB)

13: Q = Q + Q1;
14: A3 = A3[]⊕B3[];
15: B3 = Temp;
16: until(A3 > Temp||BitSize(C) >= BitSize(Temp))

International Journal of Network Security, Vol.10, No.2, PP.107–113, Mar. 2010 109

Table 1: Calculation of multiplicative inverse of 2A by using abridged Euclidean algorithm for polynomials

A1 B2 Quotient
x8 + x4 + x3 + x + 1 1 0 -

x5 + x3 + x 0 1 x3 + x
x4 + x3 + x2 + x + 1 - x3 + x x+1

x3 + x + 1 - x4 + x3 + x2 + x + 1 x+1
x - x5 + x3 + x + 1 x2 + 1
1 - x7 + x4 + x3 x

17: A2 = B2;
18: B3 = A3; //Remainder part of A3/B3

19: A3 = Temp;
20: N = BitSize(Q); //Binary Bit Size of Q

21: Temp = B2; C2 = 0; //Step 2

22: do
23: C2 = 0d;
24: If(QN == 1) //Testing if Nth bit of Q is 1

25: C1 = B2 << N − 1; //Linear left shift by N − 1 times

26: C2 = C2⊕C1;

27: End if

28: N −−;
29: until(N >= 1)
30: B2 = C2;
31: B2 = B2 ⊕A2; // Multiplicative Inverse

32: A2 = Temp;
33: end while
34: end

The above algorithm works for any polynomial function
over GF (2p). In next section, we give the implementation
details.

5 Implementation of Our Algo-
rithm

We have implemented this approach for real time com-
putation with minimum requirement. The polynomial
functions are handled in the form of binary and dec-
imal values. To convert the polynomial into decimal
value, the x in the polynomial function is replaced by
2, because the base value for GF (2p) is 2. For example,
x8 + x4 + x3 + x + 1 = 283 and x5 + x3 + x = 42.

Our task is to determine (x5 + x3 + x)−1 modulo
(x8 + x4 + x3 + x + 1). As the computer cannot directly
handle the polynomials, we use the numerical equivalent
to the base 2. The proposed method of computation is
illustrated below.

Iteration 1:
Multiplicative inverse of 2A (2AH = 4210) in GF (28).
C1 = C2 = A2 = B2 = 0
Step 1.

A3 = 283 = 100011011
B3 = 42 = 000101010

Q1 = 1 and Q = 0
Temp = B3 = 42, B2 = 0
A3 −→100011011
B3 −→000101010 1st bit of A3 Not Equal to 1st bit of B3

so, B3 << linear left shift by 1 bit Q1 = Q1 ∗ 2 = 1 ∗ 2 = 2

A3 −→100011011 1st bit of A3 Not Equal to 1st bit of B3

so, B3 << linear left shift by 1 bit

B3 −→001010100 Q1 = Q1 ∗ 2 = 2 ∗ 2 = 4
A3 −→100011011 1st bit of A3 Not Equal to 1st bit of B3

so, B3 << linear left shift by 1 bit

B3 −→010101000 Q1 = Q1 ∗ 2 = 4 ∗ 2 = 8
A3 −→100011011 1st bit of A3 Equal to 1st bit of B3

so, A3 = A3 ⊕B3

B3 −→101010000 Q = Q + Q1 = 8 + 0 = 8
A3 −→001001011 Decimal value of 001001011 = 75
A3 = 75; B3 = Temp = 42;
First Condition (A3=75)>(Temp = 42) //TRUE
Second Condition BitSize(75)>BitSize(42) //TRUE
Q = 8 and Q1 = 1
A3 −→1001011 1st bit of A3 Not Equal to 1st bit of B3

so, B3 << linear left shift by 1 bit

B3 −→0101010 Q1 = Q1 ∗ 2 = 1 ∗ 2 = 2
A3 −→1001011 1st bit of A3 Equal to 1st bit of B3

so, A3 = A3 ⊕B3

B3 −→1010100 Q = Q + Q+1 = 8 + 2 = 10
A3 −→0011111 Decimal value 0011111 = 31
A3 = 31; B3 = Temp = 42;
First Condition (A3=31) > (Temp = 42) //FALSE
Second Condition BitSize(31) > BitSize(42) //FALSE
A2 = B2

B3 = A3

A3 = Temp
Q = 10andB3 = 31
B2 = 1 = 0001
Q = 10 = 1010

Step 2.
N = BitSize(Q) = 4C2 = 0000Temp = B2

N QN C1 = B2 << N C2 ⊕ C1 −→ C2

3 1 1000 0000⊕1000−→ 1000

2 0 - - −→ 1000

1 1 0010 1000⊕0010−→ 1010

International Journal of Network Security, Vol.10, No.2, PP.107–113, Mar. 2010 110

0 0 - - −→ 1010

B2 = C2 = 1010
B2 = B2 ⊕A2 = 1010⊕ 0000 = 1010
A2 = Temp = 0001

At end of the iteration 1: Q = 10, A2 = 1, A3 = 42, B2 =
10, B3 = 31.

While B3 = 31 and B3 6= 1 do Step 1 and Step 2
until B3 = 1. When the B3 value reaches 1 then exe-
cution will stop. The final B2 value is the multiplicative
inverse value. The value may be expressed as a polyno-
mial function. In our case B2 = 15210 = 100110002 That
is (x5+x3+x)−1 modulo (x8+x4+x3+x+1) = x7+x4+x3

Step 1 is used to calculate Q, A3 and B3 values and
Step 2 is use to calculate B2 value. Likewise, the re-
maining iterations lead to the calculation of the Multi-
plicative Inverse. The complete iterations are worked in
Appendix A. This is a case where both the conditions,
namely, C > B3 and Bitsize(C) == Bitsize(B3) are
fully met. Table 2 shows the result of the computations.

6 Performance Analysis

The program for computerizing the algorithm was devel-
oped in C++. The size of the file containing the program
is 5.99 kB. It occupied a disk space of 8.192 kB. A typical
smart card MEAP (Multifunctional Embedded Applica-
tion Platform) processor has the following specification:
250-333MHz, 20MB RAM and 270-400 MB disk space.
Therefore this program can be easily embedded in any
smart card device. The table gives the execution times
for two inputs, run in the above environment.

Manual input implies the input is entered during the
program execution time. In automated input, the input
is already incorporated in the program itself and there is
no need for human intervention.

7 Conclusion

We have implemented the Extended Euclidean Algorithm
for polynomials for practical use. This implementation
can be easily extended for determining the elements of
the S-Box used in Advance Encryption Standard algo-
rithm. The method is easy and compact enough to adopt
for smaller applications like smart card, information se-
curity in mobile device and security in small memory de-
vice. Our algorithm is efficient for determining the multi-
plicative inverse of polynomials over GF (2P). However
for more general case of GF (ZP), a lot of further re-
search is to be done. As future extension of this work,
it is proposed to extend our computing algorithm to han-
dle GF (ZP) also. To the best of our knowledge, this
computerized method of handling polynomials using Ex-
tended Euclidean Algorithm is proposed for the first time.
Therefore a comparative analysis with existing work is not

possible. Further work may strive to implement the same
approach for implementation in hardware for real time
applications.

Acknowledgements

The authors are grateful to the management of Thiagara-
jar College of Engineering Madurai, India, for granting
permission to undertake this research work. They express
their gratitude to Smart and Secure Project sponsored
by the National Technical Research Organization, Gov-
ernment of India, for providing financial support. Our
thanks are due to the Head of the Department of Com-
puter Science and Engineering of Thiagarajar College of
Engineering for allowing us the use of the laboratories and
computing facilities.

References

[1] L. C. Calvez, S. Azou, and P. Vilbe, “Variation on
Euclid’s algorithm for polynomials,” Electronics Let-
ters, vol. 33, no. 11, pp. 939-940, 1997.

[2] A. K. Daneshbeh and M. A. Hasan, “A class of uni-
directional bit serial systolic architectures for multi-
plicative inversion and division over GF(2m),” IEEE
Transactions on Computers, vol. 54, no. 3, pp. 370-
380, 2005.

[3] W. Diffie and M. E. Hellman, “New directions in
cryptography,” IEEE Transactions on Information
Theory, vol. 22, no. 6, pp. 644-654, 1976.

[4] V. Z. Gathen and J. Gerhard, Modern Computer
Algebra, 2nd Edition, Cambridge University Press,
2003.

[5] A. Goupil and J. Palicot, “Variation on variation on
Euclid’s algorithm,” IEEE Transactions on Signal
Processing Letters, vol. 11, no. 5, pp. 457-458, 2004.

[6] J. N. Jr, “Analysis of Venkaiah et al.’s AES design,”
International Journal of Network Security, vol. 9, no.
3, pp. 285-289, 2009.

[7] D. E. Knuth, The Art of Computer Programming,
vol. 2, 3rd Edition, Addison-Wesley, Reading, MA,
1997.

[8] S. Landau, “Polynomial in the Nation’s service: Us-
ing algebra to design the advanced encryption stan-
dard,” American Mathematical Monthly, vol. 111,
pp. 89-117, Feb. 2004.

[9] C. L. Liu, G. Horng, and H. Y. Liu, “Computing
the modular inverse is as simple as computing the
GCDs,” International Journal of Finite Fields and
Their applications, vol. 14, pp. 65-75, 2008.

[10] National Institute Fro Standards and Technology,
Digital Signature Standard (DSS), Federal Register,
56:169, Aug. 1991.

[11] R. R. Ramasamy, M. A. Prabakar, M. I. Devi, and
M. Suguna, “Knapsack based ECC encryption and
decryption,” International Journal of Network Secu-
rity, vol. 9, no. 3, pp. 218-226, 2009.

International Journal of Network Security, Vol.10, No.2, PP.107–113, Mar. 2010 111

Table 2: Calculation of multiplicative inverse of 2AH = 4210 over 28310 by using the proposed computerized algorithm

Iteration Q A2 A3 B2 B3

0 - 0 283 1 42
1 10 1 42 10 31
2 3 10 31 31 11
3 3 31 11 43 2
4 5 43 2 152 1

Table 3: Execution time needed for our proposed algorithm

Algorithm Manual I/P Automated I/P
Our Proposed Algorithm 3816.3 ms 140.2 ms

[12] R. L. Rivest, A. Shamir, and L. Adlelman, “A
method for obtaining digital signatures and public
key cryptosystems,” Communications Of the ACM,
vol. 21, no. 2, pp. 120-126, 1978.

[13] K. H. Rosen, Elementary Number Theory and Its
Application, 4th Edition, Addison-Wesley, Reading,
MA, 2000.

[14] W. Stallings, Cryptography and Network Security
Principles and Practices, 4th Edition, Prentice-Hall
India, 2006.

[15] J. Zhou, “Fast algorithms for determining the min-
imal polynomials of sequences with period kn Over
GF (Pm),” International Journal of Network Secu-
rity, vol. 7, no. 1, pp. 38-41, 2008.

Appendix A

Iteration 1
Multiplicative inverse of 2A in GF (28). (2AH =
4210)

C1 = C2 = A2 = B2 = 0
Step 1.

A3 = 283 = 100011011
B3 = 42 = 000101010
Q1 = 1andQ = 0
Temp = B3 = 42, B2 = 0
A3 −→100011011
B3 −→000101010 1st bit of A3 Not Equal to 1st bit of B3

so, B3 << linear left shift by 1 bit Q1 = Q1 ∗ 2 = 1 ∗ 2 = 2

A3 −→100011011 1st bit of A3 Not Equal to 1st bit of B3

so, B3 << linear left shift by 1 bit

B3 −→001010100 Q1 = Q1 ∗ 2 = 2 ∗ 2 = 4
A3 −→100011011 1st bit of A3 Not Equal to 1st bit of B3

so, B3 << linear left shift by 1 bit

B3 −→010101000 Q1 = Q1 ∗ 2 = 4 ∗ 2 = 8
A3 −→100011011 1st bit of A3 Equal to 1st bit of B3

so, A3 = A3 ⊕B3

B3 −→101010000 Q = Q + Q1 = 8 + 0 = 8

A3 −→001001011 Decimal value of 001001011 = 75
A3 = 75; B3 = Temp = 42;
First Condition (A3=75)>(Temp = 42) //TRUE
Second Condition BitSize(75)>BitSize(42) //TRUE
Q = 8 and Q1 = 1
A3 −→1001011 1st bit of A3 Not Equal to 1st bit of B3

so, B3 << linear left shift by 1 bit

B3 −→0101010 Q1 = Q1 ∗ 2 = 1 ∗ 2 = 2
A3 −→1001011 1st bit of A3 Equal to 1st bit of B3

so, A3 = A3 ⊕B3

B3 −→1010100 Q = Q + Q1 = 8 + 2 = 10
A3 −→0011111 Decimal value 0011111 = 31
A3 = 31; B3 = Temp = 42;
First Condition (A3=31) > (Temp = 42) //FALSE
Second Condition BitSize(31) >= BitSize(42) //FALSE
A2 = B2

B3 = A3

A3 = Temp
Q = 10andB3 = 31
B2 = 1 = 0001
Q = 10 = 1010

Step 2.
N = BitSize(Q) = 4C2 = 0000Temp = B2. See in table a

N QN C1 = B2 << N C2 ⊕ C1 −→ C2

3 1 1000 0000⊕1000−→ 1000

2 0 - - −→ 1000

1 1 0010 1000⊕0010−→ 1010

0 0 - - −→ 1010

B2 = C2 = 1010
B2 = B2 ⊕A2 = 1010⊕ 0000 = 1010
A2 = Temp = 0001

At end of the Iteration 1: Q = 10, A2 = 1, A3 = 42, B2 =
10, B3 = 31.
While(B3 > 1) do next iteration

Iteration 2
Step 1.

International Journal of Network Security, Vol.10, No.2, PP.107–113, Mar. 2010 112

A3=42=101010
B3=31=011111
Q1=1 and Q=0
Temp = B3 B2 = 10 A2 = 1
A3 −→ 101010
B3 −→ 011111 1st bit of A3 Not Equal to 1st bit of B3

so, B3 << linear left shift by 1 bit Q1 = Q1 ∗ 2 =
1 ∗ 2 = 2

A3 −→ 101010 1st bit of A3 Equal to 1st bit of B3

so, A3 = A3 ⊕B3

B3 −→ 111110 Q = Q+Q1=0+2=2
A3 010100 Decimal value of 010100 = 20
A3= 20; B3=Temp=31;
First Condition (A3=20) > (Temp = 31) //FALSE
Second Condition BitSize(20) >= BitSize(= 31)

//TRUE
Q = 2 and Q1 = 1
A3 −→ 10100 1st bit of A3 Equal to 1st bit of B3

so, A3 = A3 ⊕B3

B3 −→ 11111 Q = Q+Q1=2+1=3
A3 −→ 01011 Decimal value 01011 = 11
A3= 11; B3=Temp=31;
First Condition (A3=11) > (Temp = 31) //FALSE

Second Condition BitSize(11) >= BitSize(31)
//FALSE

A2 = B2

B3 = A3

A3 = Temp
Q = 3 and B3 = 11
B2 = 10 = 1010
Q = 3 = 11

Step 2.
N = BitSize(Q) = 2 C2 = 0000 Temp = B2. See in

table b.
N QN C1 = B2 << N C2 ⊕ C1 −→ C2

1 1 10100 00000⊕10100 1000

0 1 1010 10100⊕01010 11110

B2=C2=11110 = 30
B2=B2 ⊕A2=11110⊕00001 = 11111 = 31
A2 = Temp = 1010 = 10

At end of the Iteration 2: Q = 3, A2=10, A3=31,
B2=31, B3=11.
While(B3 >1) do next iteration.

Iteration 3
Step 1.

A3 = 31 = 11111
B3 = 11 = 01011
Q1 = 1 and Q =0
Temp = B3 B2 = 31 A2 = 10

A3 −→ 11111
B3 −→ 01011 1st bit of A3 Not Equal to 1st bit of B3

so, B3 << linear left shift by 1 bit

Q1 = Q1 ∗ 2 = 1 ∗ 2 = 2
A3 −→ 11111 1st bit of A3 Equal to 1st bit of B3

so, A3 = A3 ⊕B3

B3 −→ 10110 Q = Q + Q1 = 0 + 2 = 2
A3 −→ 01001 Decimal value of 01001 = 9
A3= 9; B3=Temp=11;
First Condition (A3=9) > (Temp = 11) //FALSE

Second Condition BitSize(9) >= BitSize(11)
//TRUE

A3=9; B3=Temp=11;
Q = 2 and Q1 = 1
A3 −→ 1001 1st bit of A3 Equal to 1st bit of B3

so, A3 = A3 ⊕B3

B3 −→ 1011 Q = Q + Q1 = 2 + 1 = 3
A3 −→ 0010 Decimal value 0010 = 2
A3= 2; B3=Temp=11;
First Condition (A3=2) > (Temp = 11) //FALSE

Second Condition BitSize(2) >= BitSize(11)
//FALSE

A2 = B2

B3 = A3

A3 = Temp = 11
Q = 3 and B3 = 2
B2 = 31 = 11111
Q = 3 = 11

Step 2.
N = BitSize(Q) = 2 C2 = 0000 Temp = B2. See in

table c
N QN C1 = B2 << N C2 ⊕ C1 −→ C2

1 1 111110 000000⊕111110 111110

0 1 111110 111110⊕011111 100001

B2 = C2 = 100001 = 33
B2 = B2 ⊕A2 = 100001⊕001010 = 101011 = 43
A2 = Temp = 11111 = 31

At end of the Iteration 3: Q = 3, A2 = 31, A3 =
11, B2 = 43, B3 = 2.
While(B3 ¿ 1) do next iteration.

Iteration 4
Step 1.

A3 = 11 = 1011
B3 = 2 = 0010
Q1 = 1 and Q =0
Temp = B3 B2 = 43 A2 = 31
A3 −→ 1011
B3 −→ 0010 1st bit of A3 Not Equal to 1st bit of B3

so, B3 << linear left shift by 1 bit

International Journal of Network Security, Vol.10, No.2, PP.107–113, Mar. 2010 113

Q1 = Q1 ∗ 2 = 1 ∗ 2 = 2
A3 −→ 1011 1st bit of A3 Not Equal to 1st bit of B3

so, B3 << linear left shift by 1 bit

B3 −→ 0100 Q1 = Q1 * 2 = 2 * 2 = 4
A3 −→ 1011 1st bit of A3 Equal to 1st bit of B3

so, A3 = A3 ⊕B3

B3 −→ 1000 Q = Q + Q1 = 0 + 4 = 4
A3 −→ 0011 Decimal value of 0011 = 3
A3= 3; B3=Temp=2;
First Condition (A3=3) > (Temp = 2) //TRUE

Second Condition BitSize(3) >= BitSize(2)
//TRUE

Q = 4 and Q1 = 1
A3 −→ 11 1st bit of A3 Equal to 1st bit of B3

so, A3 = A3 ⊕B3

B3 −→ 10 Q = Q + Q1 = 4 + 1 = 5
A3 −→ 01 Decimal value 01 = 1
A3= 1; B3=Temp=2;
First Condition (A3=1) > (Temp = 2) //FALSE

Second Condition BitSize(1) >= BitSize(2)
//FALSE

A2 = B2

B3 = A3

A3 = Temp = 2
Q = 5 and B3= 1
B2 = 43 = 101011
Q = 5 = 101

Step 2.
N = BitSize(Q) = 2 C2 = 0000 Temp = B2

N QN C1 = B2 << N C2 ⊕ C1 −→ C2

2 1 10101100 000000⊕10101100 10101100

1 0 - - 10101100

0 1 101011 10101100⊕101011 10000111

B2 = C2 = 10000111 = 71
B2 = B2 ⊕A2 = 10000111⊕11111 = 10011000 = 152
A2 = Temp = 101011 = 43

At end of the Iteration 4: Q = 5, A2 = 43, A3 = 2,
B2 = 152, B3 = 1.
As B3 = 1, Multiplicative Inverse of 2A in GF (28) is
152=10011000−→(X7 + X4 + X3)

R. Rajaram Ramasamy Dean of CSE/IT, Thiagara-
jar College of Engineering, has BE degree in Electrical
and Electronics Engineering from Madras University
in 1966. He secured the M Tech degree in Electrical
Power Systems Engineering in 1971 from IIT Kharagpur,
and the Ph.D. degree on Energy Optimization from
Madurai Kamaraj University in 1979. He and his
research scholars have published/presented more that 45
research papers in Journals and Conferences. Eight of
his scholar secured the Ph.D. degree in computer science
and communications areas. Two have submitted thesis
and awaiting their results. Six are currently pursuing
their Ph.D. research in Anna University with his guid-
ance. His current areas of interest are Mobile Agents,
Cryptography and Data Mining. He has published more
than 13 text books on Computer languages and Basi c
Communications. He attended the International Seminar
on Solar Energy at University of Waterloo, Canada
during 1978. He has served the Makerere University at
Uganda during 1977-1978 and University of Mosul during
1980-1981. He secured two best technical paper awards
from the Institution of Engineers India and one from
Indian Society for Technical Education. He has travelled
to Malaysia, London, Paris, Belgium New York, Toronto,
Nairobi.

M. Amutha Prabakar received the B. E. degree in
Computer Science and Engineering, in 2003; the M. E.
in Computer Science and Engineering, in 2005. He had
worked as a lecturer in the department of Computer Sci-
ence and Engineering, R. V. S. College of Engineering and
Technology, India from 2004-2007. Now he is working as
Lecturer in Department of Information Technology, Thi-
agarajar College of Engineering, Madurai. His current
research interests include Cryptography and Security.

