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Abstract

Orthomorphic permutations have important applications
in the design of block ciphers. A practical algorithm is
derived to generate all orthomorphic permutations over
Fm

2 , and it is verified that the number of all orthomorphic
permutations over F 4

2 is 244,744,192. With the theory of
finite fields, a brief method is derived to generate a per-
mutation polynomial corresponding to every permutation
over Fm

2 , and all orthomorphic permutation polynomials
over F 4

2 are analyzed.
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1 Introduction

Block ciphers are widely used in cryptology and Internet
communications. Constructing new block ciphers which
are resistant to cryptanalysis has attracted the attention
of researchers for the past twenty years. Orthomorphisms
have important applications in the design of block ciphers
[5], and have a strong relationship to the design of hashing
functions and pseudo-random sequence generators.

Let So(m) denote the set of orthomorphic permuta-
tions of order 2m, Liu and Shu in [4] proposed a method
to generate orthomorphic permutations of high order ran-
domly by recursively combining small orthomorphic per-
mutations, and proved that |So(m)| > 22m

.
With the polynomial theory in finite fields, orthomor-

phic permutation polynomials over finite field F 3
2 is dis-

cussed, and the detailed expressions and the enumeration
of orthomorphic permutation polynomials over F 3

2 is ob-
tained [1, 2].

In this note, a practical algorithm is derived to gen-
erate all orthomorphic permutations over Fm

2 , and it is
verified that the number of all orthomorphic permuta-
tions over F 4

2 is 244,744,192. With the theory of finite
fields, a brief method is derived to generate a permuta-
tion polynomial corresponding to every permutation over
Fm

2 , and all orthomorphic permutation polynomials over
F 4

2 are analyzed.

We first introduce some definitions and lemmas, which
can be found in [1, 2].

Throughout this paper, finite field Fq is occasionally
denoted by Fm

p or GF (p)m, where q = pm, p is a positive
prime number, GF (p) = {0, 1, 2, · · · , p − 1}.

Definition 1. A permutation σ on Fm
2 is called an or-

thomorphic permutation if x 7→ x ⊕ σ(x), ∀x ∈ Fm
2 , is

also a permutation, where
⊕

stands for bit wise addition
modulo 2.

We identify an m−bit binary vector (a0, a1, · · · , am−1)

with an integer i =
m−1
∑

j=0

aj2
j. Thus a permutation P can

be represented as,

P =

(

0 1 2 · · · n − 1
σ(0) σ(1) σ(2) · · · σ(n − 1)

)

,

where σ(i) ∈ Fm
2 , 0 ≤ i < n, n = 2m. It can be abbrevi-

ated as,

P = {σ(0), σ(1), σ(2), · · · , σ(n − 1)}.

An identical permutation is denoted as,

I = {0, 1, 2, · · · , n − 1}.

For m = 2, as {2
⊕

0, 1
⊕

1, 3
⊕

2, 0
⊕

3} =
{2, 0, 1, 3}, both {2,1,3,0 } and {2,0,1,3 } are orthomor-
phic permutations.

Definition 2. A function f : Fm
2 → Fm

2 is said to be a
permutation polynomial, if f ∈ Fq[x] and f is a one-to-
one mapping, where q = 2m.

Definition 3. A function f : Fm
2 → Fm

2 is called an
orthomorphic permutation polynomial if both f(x) and x⊕
f(x) over Fm

2 are permutation polynomials.

It is well known that any function f : Fm
2 → Fm

2 can
be represented by a polynomial F ∈ Fq[x] with an order
less than q = 2m. Hence we only need to consider the
permutation polynomials of order less than q = 2m.
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Lemma 1. If both function f : Fm
2 → Fm

2 and function
g : Fm

2 → Fm
2 are permutation polynomials, then function

f � g : Fm
2 → Fm

2 is a permutation polynomial, where
f � g(x) = f(g(x)) for every x ∈ Fm

2 .

Note that for any constant r ∈ Fm
2 , x + r is a permu-

tation polynomial, the following Lemma 2 and Lemma 3
are immediate.

Lemma 2. f(x) ∈ Fq[x] is a permutation polynomial if
and only if for every r ∈ Fq, f(x) + r is a permutation
polynomial.

Lemma 3. f(x) ∈ Fq[x] is an orthomorphic permutation
polynomial if and only if for every r ∈ Fq, f(x) + r is an
orthomorphic permutation polynomial.

Lemma 4. f(x) = ax + b ∈ Fq[x] is an orthomorphic
permutation polynomial if and only if a 6= 0, 1.

Let Fq = Zp(y)/g(y), where g(y) is a irreducible poly-
nomial, and deg(g(y)) = m, p is a prime. Then Fq is a
finite field with character p, q = pm.

Let h : b0 + b1y + · · ·+ bm−1y
m−1 7→ (b0, b1, · · · , bm−1),

where bi ∈ GF (p). Then h is a natural isomorph from Fq

to Fm
p .

The following lemmas are the main results of [1].

Lemma 5. Let h : b0 + b1y + · · · + bm−1y
m−1 7→

(b0, b1, · · · , bm−1), where bi ∈ GF (p). Let σ be a per-
mutation over Fm

p , f(x) = h−1σh. Then f(x) ∈ Fq[x] is
a permutation polynomial, where deg(f(x)) < q, q = pm.
On the contrary, let f(x) ∈ Fq[x] be a permutation poly-
nomial, σ = hf(x)h−1. Then σ is a permutation over
Fm

p .

Lemma 6. Let σ be a permutation over Fm
p , f(x) =

h−1σh. Then σ is an orthomorphic permutation if and
only if f(x) ∈ Fq[x] is an orthomorphic permutation poly-
nomial, where deg(f(x)) < q, q = pm.

Thus, the enumeration of orthomorphic permutations
over Fm

p is equivalent to the enumeration of orthomorphic
permutation polynomials over Fq, q = pm.

2 An Algorithm to Construct Or-

thomorphic Permutations

Let σ be an orthomorphic permutation over Fm
2 . From

Lemma 3, τ = σ +σ(0) is also an orthomorphic permuta-
tion over Fm

2 and τ(0) = 0, hence we only need to consider
the orthomorphic permutation σ such that σ(0) = 0.

In fact, for every orthomorphic permutation σ, there
exists a point α, such that σ(α) = α. As σ + I is a
permutation, where I is an identical permutation, hence
there exists a point α, such that σ(α) + α = 0, namely,
σ(α) = α.

We now consider the orthomorphic permutation a over
{0, 1, 2, · · · , n − 1}, where n = 2m. The permutation a

is represented as {a[0], a[1], a[2], · · · , a[n− 1]}. The main
idea of the algorithm is as follows.

We select a[k], so that a[k] is not equal to any of
a[0], a[1], a[2], · · · , a[k − 1], and a[k] ⊕ k is not equal to
any of a[0] ⊕ 0, a[1] ⊕ 1, a[2]⊕ 2, · · · , a[k − 1] ⊕ (k − 1).

Algorithm 1. To construct an orthomorphic permuta-
tion.
// global variables
char num[n];
/*here we consider orthomorphic permutations over
{0, 1, 2, · · · , n − 1} */
char conflag;
/* Suppose we have selected numc+1 integers,
num[0],num[1],· · · ,num[numc]. In the array bixor,
the values with indexes num[0]

⊕

0,num[1]
⊕

1, · · · ,
num[numc-1]

⊕

(numc-1), respectively, are all set to
1, otherwise set to 0. num[0]

⊕

0,num[1]
⊕

1, · · · ,
num[numc]

⊕

(numc) are distinct integers. */
void ortho(int numc,char *bitxor)
{

char select[n];
char i,j,k;
char bitxorn[n];
i=0;
//loop to find the n-(numc+1) unselected integers
//from {0, 1, 2, · · · , n − 1}.
for(j=0; j< n; j++)
{

conflag=0;
for(k=0;k<numc+1;k++)
if(j==num[k]){conflag=1;break;}

if(conflag)continue;
//j is one of the unselected integer.
if(numc< n-2)
{

select[i]=j;
i++;

}
else
{

if(bitxor[j
⊕

(n-1)]==1)return;
if(j

⊕

(n-1)==num[numc]
⊕

numc)return;
//Output the orthomorphic permutations.
for(i=0;i< n-1;i++)printf(” %d”,num[i]);
printf(” %d ”,j);
return;

}
}
// select num[numc+1] from select[].
for(i=0;i< n;i++)bitxorn[i]=bitxor[i];
bitxorn[num[numc]

⊕

numc]=1;
for (j=0;j< n-1-numc;j++)
{

if(bitxorn[select[j]
⊕

(numc+1)]==1)continue;
num[numc+1]=select[j];
/* here we can not change
bitxorn[select[j]

⊕

(numc+1)].*/
ortho(numc+1,bitxorn);
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}
}

As we only need to consider the orthomorphic permu-
tation σ such that σ(0) = 0, we can call the function
ortho() like the following to find all orthomorphic permu-
tations over {0,1,2,· · · , n-1 }.

num[0]=0;
for(i=0;i< n;i++)bitxor[i]=0;
ortho(0,bitxor);

For n = 16, we have made a test by a computer
with CPU Celeron 2.0G. It takes 6 minutes to find all
15,296,512 orthomorphic permutations σ over {0,1,2,· · · ,
14, 15 } such that σ(0) = 0. Thus the number of all or-
thomorphic permutations over F 4

2 is 15, 296, 512 × 16 =
244, 744, 192.

For n = 32, setting the first 14 integers of
orthomorphic permutations over {0,1,2,· · · , n-1 } be
{0,2,4,6,3,1,7,5,16,18,20,22,19,17}, respectively, we found
2,375,680 orthomorphic permutations by calling function
ortho().

3 A Method to Construct Permu-

tation Polynomials

We now consider a method to construct permutation
polynomials corresponding to the permutations over Fm

2 .
Here · denotes the multiplication over Fm

2 , and both +
and - denote the addition over Fm

2 .

Let Fm
2 be a finite field. It is well known that Fm

2 −
{0} is a multiplication cyclic group of order 2m − 1. Let
u be the generator of Fm

2 − {0}, q = 2m. Then Fm
2 =

{0, 1, u, u2, · · · , uq−2}.

Let f(y) = a0 + a1y + a2y
2 + · · · + aq−1y

q−1, where
ai ∈ Fm

2 , 0 ≤ i < q, correspond to an orthomorphic per-
mutation {p[0], p[1], p[u], p[u2], · · · , p[uq−2]}. We assume
a0 = 0 since we only consider the orthomorphic permuta-
tion p such that p[0] = 0.

In other words, we want a1, a2, · · · , aq−1 to satisfy the
following equation array.























































a1 · 1 + a2 · 1
2+

· · · + aq−1 · 1
q−1 = p[1],

a1 · u
1 + a2 · (u

1)2+
· · · + aq−1 · (u

1)q−1 = p[u1],
a1 · u

2 + a2 · (u
2)2+

· · · + aq−1 · (u
2)q−1 = p[u2]

· · · · · · · · ·
a1 · u

q−2 + a2 · (u
q−2)2+

· · · + aq−1 · (u
q−2)q−1 = p[uq−2].

(1)

We rewrite Equation (1) as the following.













1 1 1 · · · 1
u u2 u3 · · · uq−1

(u2) (u2)2 (u2)3 · · · (u2)q−1

· · · · · ·
(uq−2) (uq−2)2 (uq−2)3 · · · (uq−2)q−1













·















a1

a2

a3

...
aq−1















=















p[1]
p[u]
p[u2]
...
p[uq−2]















Note that 1=1+1+1 and 1+ui+(u2)i+ · · ·+(uq−2)i =
(ui)q−1

−1
ui

−1 = 0, where i is a positive integer and i 6= 0(
mod (q−1)). It is easy to show that the following identity
holds.













1 (u)q−2 (u2)q−2 · · · (uq−2)q−2

1 (u)q−3 (u2)q−3 · · · (uq−2)q−3

1 (u)q−4 (u2)q−4 · · · (uq−2)q−4

· · · · · ·
1 1 1 · · · 1













·













1 1 · · · 1
u u2 · · · uq−1

(u2) (u2)2 · · · (u2)q−1

· · · · · ·
(uq−2) (uq−2)2 · · · (uq−2)q−1













= I,

where I is an identity matrix. Then we have,















a1

a2

a3

...
aq−1















=













1 (u)q−2 · · · (uq−2)q−2

1 (u)q−3 · · · (uq−2)q−3

1 (u)q−4 · · · (uq−2)q−4

· · · · · ·
1 1 · · · 1













·















p[1]
p[u]
p[u2]
...
p[uq−2]















(2)

From Identity (2), we obtain, the following theorem.

Theorem 1. Let Fm
2 = {0, 1, u, u2, · · · uq−2},

{a[0], a[1], a[u], a[u2], · · · a[uq−2]} be a trans-
form over {0, 1, u, u2, · · · uq−2}, where q = 2m.
Let p[ui] = a[ui] − a[0], 1 ≤ i < q, f(y) =
a0 + a1y + a2y

2 + a3y
3 + · · · + aq−1y

q−1, where
a0 = a[0], ai, 1 ≤ i < q, is defined by Identity (2). Then
f(0) = a[0], and f [ui] = a[ui], 1 ≤ i < q.

Theorem 1 is a generalization of Lemma 5, which is the
main result of [1].

Let {a[0], a[1], a[u], a[u2], · · · , a[uq−2]} be a permuta-
tion over {0, 1, u, u2, · · · , uq−2}. Let p[ui] = a[ui] −
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a[0], 1 ≤ i < q. Then {p[1], p[u], p[u2], · · · , p[uq−2] is a
permutation over {1, u, u2, · · · uq−2}. Note that 1 + u +
u2 + · · ·+ uq−2 = 0, from Identity (2), the following The-
orem 2 is immediate.

Theorem 2. Let f(y) = a0 + a1y + a2y
2 + a3y

3 +
· · · + aq−1y

q−1 be a permutation polynomial over Fm
2 =

{0, 1, u, u2, · · · uq−2}, where q = 2m. Then aq−1 = 0,
namely, deg(f(y)) ≤ q − 2.

Let GF (8) = {0, 1, x, 1 + x, x2, 1 + x2, x + x2, 1 + x +
x2}. It is easy to show that GF (8) is a finite field with
multiplication modulo x3 + x + 1. Let 2,3,4,5,6,7 denote
x, 1 + x, x2, 1 + x2, x + x2, 1 + x + x2, respectively. Then
the all possible multiplications over GF (8) can be listed
as the following.

(mij)8×8 =

























0 0 0 0 0 0 0 0
0 1 2 3 4 5 6 7
0 2 4 6 3 1 7 5
0 3 6 5 7 4 1 2
0 4 3 7 6 2 5 1
0 5 1 4 2 7 3 6
0 6 7 1 5 3 2 4
0 7 5 2 1 6 4 3

























Here mij , 0 ≤ i < 8, 0 ≤ j < 8, stands for the multi-
plication of i ∈ GF (8) and j ∈ GF (8) modulo x3 + x+ 1.

It is easy to show that any of 2,3,4,5,6,7 can be the
generator of GF (8)− {0}. Take 2 as an example, 22 = 4,
23 = 3, 24 = 6, 25 = 7, 26 = 5, 27 = 1.

Let f(y) = a0+a1y+a2y
2+a3y

3+a4y
4+a5y

5+a6y
6+

a7y
7, where ai ∈ GF (8), 0 ≤ i ≤ 7, correspond to an

orthomorphic permutation {p[0], p[1], p[2], · · · , p[7]}. We
assume a0 = 0 since we only consider the orthomorphic
permutation p such that p(0) = 0.

In other words, we want a1, a2, a3, a4, a5, a6, a7 to sat-
isfy the following equation array.































































































a1 · 1 + a2 · 1
2 + a3 · 1

3

+a4 · 1
4 + a5 · 1

5 + a6 · 1
6 + a7 · 1

7 = p[1],
a1 · 2 + a2 · 2

2 + a3 · 2
3

+a4 · 2
4 + a5 · 2

5 + a6 · 2
6 + a7 · 2

7 = p[2],
a1 · 4 + a2 · 4

2 + a3 · 4
3

+a4 · 4
4 + a5 · 4

5 + a6 · 4
6 + a7 · 4

7 = p[4],
a1 · 3 + a2 · 3

2 + a3 · 3
3

+a4 · 3
4 + a5 · 3

5 + a6 · 3
6 + a7 · 3

7 = p[3],
a1 · 6 + a2 · 6

2 + a3 · 6
3

+a4 · 6
4 + a5 · 6

5 + a6 · 6
6 + a7 · 6

7 = p[6],
a1 · 7 + a2 · 7

2 + a3 · 7
3

+a4 · 7
4 + a5 · 7

5 + a6 · 7
6 + a7 · 7

7 = p[7],
a1 · 5 + a2 · 5

2 + a3 · 5
3

+a4 · 5
4 + a5 · 5

5 + a6 · 5
6 + a7 · 5

7 = p[5].

Let u = 2, q = 8. From Identity (2), we obtain,





















a1

a2

a3

a4

a5

a6

a7





















=





















1 5 7 6 3 4 2
1 7 3 2 5 6 4
1 6 2 7 4 5 3
1 3 5 4 7 2 6
1 4 6 5 2 3 7
1 2 4 3 6 7 5
1 1 1 1 1 1 1









































p[1]
p[2]
p[4]
p[3]
p[6]
p[7]
p[5]





















(3)

From Identity (3), we have obtained by computer the
detailed expressions and the enumeration of all 48 × 8 =
384 orthomorphic permutation polynomials over GF (8).
We have verified that if f(y) = a0 + a1y + a2y

2 + a3y
3 +

a4y
4 +a5y

5+a6y
6+a7y

7 is an orthomorphic permutation
polynomial over GF (8), then a3 = a5 = a6 = a7 = 0.

In a similar way to the above argument, we now
consider orthomorphic permutation polynomials over
GF (16).

Let GF (16) = {0, 1, x, 1 + x, x2, 1 + x2, x + x2, 1 + x +
x2, x3, 1 + x3, x + x3, 1 + x + x3, x2 + x3, 1 + x2 + x3, x +
x2 + x3, 1 + x + x2 + x3}. It is easy to show that with
multiplication modulo x4 +x+1, GF (16) is a finite field.
Let 2,3,4,5,6,7,8,9,10,11,12,13,14,15 denote x, 1+x, x2, 1+
x2, x + x2, 1 + x + x2,x3, 1 + x3, x + x3, 1 + x + x3, x2 +
x3, 1 + x2 + x3, x + x2 + x3, 1 + x + x2 + x3, respectively.
Then the all possible multiplications over GF (16) can be
listed as the following.

(mij)16×16 =






















































0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 2 4 6 8 10 12 14 3 1 7 5 11 9 15 13

0 3 6 5 12 15 10 9 11 8 13 14 7 4 1 2

0 4 8 12 3 7 11 15 6 2 14 10 5 1 13 9

0 5 10 15 7 2 13 8 14 11 4 1 9 12 3 6

0 6 12 10 11 13 7 1 5 3 9 15 14 8 2 4

0 7 14 9 15 8 1 6 13 10 3 4 2 5 12 11

0 8 3 11 6 14 5 13 12 4 15 7 10 2 9 1

0 9 1 8 2 11 3 10 4 13 5 12 6 15 7 14

0 10 7 13 14 4 9 3 15 5 8 2 1 11 6 12

0 11 5 14 10 1 15 4 7 12 2 9 13 6 8 3

0 12 11 7 5 9 14 2 10 6 1 13 15 3 4 8

0 13 9 4 1 12 8 5 2 15 11 6 3 14 10 7

0 14 15 1 13 3 2 12 9 7 6 8 4 10 11 5

0 15 13 2 9 6 4 11 1 14 12 3 8 7 5 10























































Here mij , 0 ≤ i < 16, 0 ≤ j < 16, stands for the
multiplication of i ∈ GF (16) and j ∈ GF (16) modulo
x4 + x + 1.

From Identity (2) and (mij)16×16, we have obtained
by computer the detailed expressions and the enumera-
tion of all 15, 296, 512× 16 = 244, 744, 192 orthomorphic
permutation polynomials over GF (16). We have verified
that if f(y) = a0 + a1y + a2y

2 + · · · + a15y
15 is an or-

thomorphic permutation polynomial over GF (16), then
a14 = a15 = 0.

We have also found that the number of orthomorphic
permutation polynomials of order 1 over GF (16) is 14×16,
and the number of orthomorphic permutation polynomi-
als of order 4, where a1 6= 0, a2 6= 0, a3 = 0, a4 6= 0, is
300 × 16.

Combining the above results, we have the following
theorem.

Theorem 3. Let f(y) = a0 + a1y + a2y
2 + a3y

3 +
· · · + aq−1y

q−1 be an orthomorphic permutation polyno-



International Journal of Network Security, Vol.10, No.1, PP.57–61, Jan. 2010 61

mial over Fm
2 = {0, 1, u, u2, · · · uq−2}, where q = 2m, m =

2, 3, 4. Then aq−2 = 0, namely, deg(f(y)) ≤ q − 3.

We end this note by the following straightforward
conjecture.

Conjecture 1. Let f(y) = a0 + a1y + a2y
2 + a3y

3 +
· · · + aq−1y

q−1 be an orthomorphic permutation polyno-
mial over Fm

2 = {0, 1, u, u2, · · · uq−2}, where q = 2m, m ≥
2 is an integer. Then aq−2 = 0, namely, deg(f(y)) ≤ q−3.

From Identity (2), Conjecture 1 is equivalent to the
following,

If {p[0], p[1], p[u], p[u2], · · · , p[uq−2]} is an orthomor-
phic permutation over {0, 1, u, u2, · · · uq−2} and p[0] = 0,
then p[1] + up[u] + u2p[u2] + · · · + uq−2p[uq−2] = 0.
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