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A Random Bit Generator Using Chaotic Maps
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Abstract

Chaotic systems have many interesting features such as
sensitivity on initial condition and system parameter, er-
godicity and mixing properties. In this paper, we exploit
these interesting properties of chaotic systems to design
a random bit generator, called CCCBG, in which two
chaotic systems are cross-coupled with each other. To
evaluate the randomness of the bit streams generated by
the CCCBG, the four basic tests: monobit test, serial
test, auto-correlation, Poker test and the most stringent
tests of randomness: the NIST suite tests have been per-
formed. As a result no patterns have been observed in
the bit streams generated by the proposed CCCBG. The
proposed CCCBG can be used in many applications re-
quiring random binary sequences and also in the design
of secure cryptosystems.
Keywords: Piecewise linear map, random bit generator,
randomness

1 Introduction

Chaotic systems have a number of interesting properties
such as sensitivity on initial condition and system param-
eter, ergodicity and mixing (stretching and folding) prop-
erties, etc. These properties make the chaotic systems a
worthy choice for constructing the cryptosystems (block
ciphers as well as stream ciphers) as sensitivity to the ini-
tial condition/system parameter and mixing properties
respectively, are analogous to the confusion and diffusion
properties of a good cryptosystem. A general way to de-
sign a chaotic stream cipher is to generate a random bit
stream using chaotic system. In this paper, we propose
a novel random bit generator through the cross-coupling
of two chaotic systems which can be used in the design of
a new chaotic stream cipher as well as in other engineer-
ing applications, where random bit sequences are required
[15]. The first idea for designing pseudo-random number
generator by making use of chaotic first order nonlinear

difference equations was proposed by Oishi and Inoue [16]
in 1982 and could construct a uniform random number
generator with an arbitary Kolmogorov’s entropy. After
a long gap, in 1993 Lin and Chua [9] designed a pseudo
random number generator by using a second-order dig-
ital filter and realised it on digital hardware. In 1996
Andrecut [1] suggested a method for obtaining a random
number generator based on logistic map and also com-
pared the congruential random generators, which are pe-
riodic, with the logistic random number generator, which
is infinite and aperiodic. In 1999 Gonzalez and Pino [3]
generalized the logistic map and designed a new func-
tion. The new chaotic function was truly unpredictable
random function, which helped in the generation of truly
random numbers. In 2001 Kolesov et al. [6] developed
a digital random-number generator based on the discrete
chaotic-signal algorithm. The suggested digital generator
employed the matrix method of chaotic-signal synthesis.
Further, Stojanovski and Kocarev [17, 18] analysed the
application of a chaotic piecewise-linear one-dimensional
map as random number generator. Li et al. [8] did a
theoretical analysis, which suggests that piecewise linear
chaotic maps have perfect cryptographic properties like:
balance in the defined interval, long cycle length, high
linear complexity, good correlation properties etc. They
also pointed out that bit streams generated through a sin-
gle chaotic system are potentially insecure as the output
may leak some information about the chaotic system. To
overcome this difficulty, they proposed a pseudo random
bit generator based on a couple of chaotic systems, which
are iterated independently and the bit streams are gen-
erated by comparing the outputs of these chaotic maps.
They also justified their theoretical claims through a few
numerical experimentations on the proposed pseudo ran-
dom bit generator. In 2003 Kocarev and Jakimoski [5] dis-
cussed the different possibilities of using chaotic maps as
pseudo-random number generators and also constructed
a chaos-based pseudorandom bit generator. In 2004 Fu et
al. [2] proposed a chaos-based random number generator
using piecewise chaotic map. Further, a one-way coupled
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chaotic map lattice was used by Huaping et al. [4] for gen-
erating pseudo-random numbers. They showed that with
suitable cooperative applications of both chaotic and con-
ventional approaches, the output of the spatiotemporally
chaotic system can meet the practical requirements of ran-
dom numbers i.e. excellent random statistical properties,
long periodicity of computer realizations and fast speed of
random number generations. This pseudo-random num-
ber generator system can be used as ideal synchronous
and self-synchronizing stream cipher systems for secure
communications. In 2005 Li et al. [7] designed and anal-
ysed a random number generator based on a piecewise-
linear map. Further, A new pseudo-random number gen-
erator (PRNG) based on a modified logistic map was pro-
posed by Liu [10]. Based on this PRNG, a chaotic stream
cipher was designed. Further, a chaotic random number
generator was developed by Wang et al. [20] and real-
ized it by an analog circuit. In 2006, Wang et al. [19]
proposed a pseudo-random number generator based on
z-logistic map, where the binary sequence through the
chaotic orbit was realized under finite computing preci-
sion.

In the proposed random bit generator, two cross-
coupled piecewise linear chaotic maps are employed (un-
like to the pseudo random bit generator proposed in [8],
where also two piecewise linear chaotic maps are employed
but they are not coupled with each other) to generate ran-
dom sequences and the set up is abbreviated as CCCBG
(Cross-Coupled Chaotic random Bit Generator). In the
CCCBG, random bit streams are generated by comparing
the two orbits generated by cross coupled piecewise linear
chaotic maps; therefore it is difficult for an eavesdropper
to extract information about both chaotic systems. The
rest of the paper is organised as follows: In the Section 2,
we discuss the dynamics of the skew tent map in brief and
the construction of the proposed CCCBG is presented in
Section 3. In Section 4, we discuss the uniformity and
randomness of the bit streams generated by CCCBG in
detail and finally, in Section 5, we conclude the paper.

2 Dynamics of Skew Tent Map

The skew tent map is ergodic and has uniform invariant
density function in its definition interval [18]. It is the
simplest kind of one-dimensional chaotic map which is
defined as:

xi+1 = F (α , xi) =





xi

α xi = [0, α)

1−xi

1−α xi = (α, 1]
(1)

where α and xi are system parameter and initial condition
of the map respectively. It is a non-invertible transfor-
mation of unit interval onto itself and contains only one
system parameter α, which determines position of the top
of the tent in the interval [0,1]. A sequence computed by
iterating F (α, x), is expansionary everywhere in the inter-
val [0,1] and distributed uniformly in it. Orbits for system

parameter values 0.4 and 0.8 are shown in Figure 1. In
Figure 2, we have depicted the chaotic solutions of the
Equation (1), which show sensitivity on initial condition
as well as on system parameter.

3 Cross-coupled Chaotic Tent
Map Based Bit Genera-
tor(CCCBG)

In this Section, we discuss the arrangement of chaotic sys-
tems in CCCBG. In the proposed CCCBG, we choose two
skew tent maps which are piecewise linear chaotic maps
and cross-coupled as shown in the Figure 3. The output
generated by the first tent map is fed to the second tent
map as the input (initial condition) and vice versa. The
system parameter for the both chaotic maps is kept same
and is in the chaotic regime. If f1(x0, α) and f2(y0, α) are
two piecewise linear chaotic maps and are given as:

xi+1 = f1(α , xi) ,
yi+1 = f2(α , yi) ,

where α is the system parameter and is same for both
chaotic tent maps, xi and yi are the initial conditions and
xi+1 and yi+1 are their new corresponding states. The
CCCBG produces the binary sequences by comparing the
outputs of the cross coupled piecewise linear chaotic maps
(as shown in Figure 3) in the following way:

g(xi+1, yi+1) =





0 if xi+1 < yi+1;

1 otherwise.

If the binary sequences generated by the CCCBG are
random and have no pattern in them, we can use them
for the development of new chaotic stream ciphers. In the
next section, we discuss basic statistical tests as well as
NIST suite tests for testing the randomness and unifor-
mity of the binary sequences generated by CCCBG.

4 Analysis of Randomness of Bit
Streams

We have studied the randomness and uniformity of the
several binary sequences of large size, generated by the
CCCBG for different sets of system parameter and ini-
tial conditions of cross-coupled tent maps. Here, we
present the results for 10000 and 15000 sized binary se-
quences corresponding to the following parameter val-
ues of the five sets: (0.48999, 0.5006841, 0.538167586),
(0.49045, 0.6410089, 0.505410089), (0.49493, 0.4417689,
0.754193089), (0.49951, 0.5166892, 0.273417389) and
(0.49999, 0.1996892, 0.738567389), where the first param-
eter value represents the system parameter value which
is same for both tent maps, and the second and third
one as the initial condition for the two tent maps. For
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Figure 1: Shows the orbits of the skew tent map for system parameter values 0.4 and 0.8

Figure 2: Shows the sensitivity of chaotic solution of skew tent map on initial condition and system parameter (α)

convenience, these five sets are designated as (α1, x1, y1),
(α2, x2, y2), (α3, x3, y3), (α4, x4, y4) and (α5, x5, y5). We
discuss in the following paragraph of this Section the re-
sult and conclusions of our study of the different statisti-
cal tests to observe the randomness and uniformity of the
binary sequences generated by the proposed CCCBG.

4.1 Monobit Test

The purpose of this test is to determine whether the fre-
quency of 0’s and 1’s in binary sequences generated by the
CCCBG are approximately same [11]. Let n0, n1 denote
the number of 0’s and 1’s in binary sequences respectively.
We calculate χ2 by using the formula [11]:

χ2 =
(n0 − n1 )2

n
,

which approximately follow a χ2 distribution with one de-
gree of freedom. The computed results are shown in Table

1. The calculated values of χ2 are less as compared to the
critical value of χ2 at α=0.05 (5% level of significance)
and 1df (one degree of freedom). It means that these bi-
nary sequences pass the monobit test and can be said to
be satisfactorily random with respect to this test [11].

4.2 Serial Test

The purpose of this test is to determine whether the num-
ber of occurrence of pairs 00, 01, 10 and 11 in the bit
streams generated by CCCBG is approximately same [11].
Let n00, n01, n10 and n11 denote the number of occurrence
of pairs 00, 01, 10 and 11 respectively in the binary se-
quences. We calculate χ2 by using the formula [11]:

χ2 =
4

n− 1
(n2

00 + n2
01 + n2

10 + n2
11)−

2
n

(n2
0 + n2

1) + 1,

and the computed values are found to follow approxi-
mately the χ2 distribution with 2 degrees of freedom. The
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Figure 3: The block diagram of Cross-Coupled Chaotic random bit Generator (CCCBG)

Table 1: Shows the calculated χ2 values for monobit test for two different large sized binary sequences having N=10000
and 15000 corresponding to five different sets of parameter values. The parameter values corresponding to five sets are
(0.48999, 0.5006841, 0.538167586), (0.49045, 0.6410089, 0.505410089), (0.49493, 0.4417689, 0.754193089), (0.49951,
0.5166892, 0.273417389) and (0.49999,0.1996892, 0.738567389). The parameters αi, xi and yi are respectively the
system parameter (same for both maps), initial conditions for the first and second maps.

Size Parameter Numbers in binary sequences Calculated Critical χ2

n0 n1 χ2 value value at α=0.005
(α1, x1, y1) 5030 4970 0.36
(α2, x2, y2) 4987 5013 0.07

N=10000 (α3, x3, y3) 4995 5005 0.01 3.8415
(α4, x4, y4) 4950 5050 1.00
(α5, x5, y5) 5029 4971 0.34
(α1, x1, y1) 7536 7464 0.35
(α2, x2, y2) 7504 7496 0.01

N=15000 (α3, x3, y3) 7496 7504 0.01 3.8415
(α4, x4, y4) 7419 7581 1.75
(α5, x5, y5) 7567 7433 1.20

results are shown in Table 2. The calculated values of χ2

are less than critical value of χ2 at α=0.05 (5% level of
significance) and 2df (two degrees of freedom). It means
that binary sequences pass the serial test and are satis-
factorily random with respect to this test.

4.3 Auto Correlation

The purpose of this test is to check for correlations be-
tween the binary sequences generated by the proposed
CCCBG. Let d be a fixed integer 1≤ d ≤ n/2 where n is
the size of binary sequence. The number of bits in binary
sequences not equal to their d-shifts is

A(d) =
n−d−1∑

i=0

si ⊕ si+d .

The statistical formula used is as follows [11]:

Z = 2(A(d) − n− d

2
)/
√

n− d.

The results are shown in Table 3 for d = 25. The cal-
culated results fall within the accepted region Z = ±1.96
at α=0.05 (i.e. at 5% level of significance). Hence the
binary sequences are random with respect to this test.

4.4 Poker Test

Let m be a positive integer such that n/m ≥ 5×(2m) and
let k = n/m where n is the size of binary sequence. We
divide the binary sequence into k non-overlapping parts
each of length m and ni is the number of occurrence of
ith type of sequences of length m, where 1 ≤ i ≤ 2m. The
Poker test determines whether m-bits long string appear
approximately in same number of times a set of binary
sequences [11]. We calculate χ2 by using the formula [11]:

χ2 =
2m

k
(

2m∑

i=1

n2
i ) − k,

and computed values approximately follow the χ2 distri-
bution with (2m – 1) degree of freedom. The results are
shown in Table 4. The calculated values of χ2 are less
than critical value of χ2 at α=0.05 and 2m−1)df (degree
of freedom). Hence the binary sequences also pass the
Poker test and are satisfactorily random with respect to
this test.

In the above analysis, we have examined the random-
ness of the binary sequences generated by the CCCBG for
four basic statistical tests. It is observed that when the
value of the system parameter (α) is between 0.49 and
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Table 4: Shows the calculated χ2 values for Poker test for two different large sized binary sequences having N=10000
and 15000 corresponding to five different sets of parameter values. The parameters αi, xi and yi are respectively
the system parameter (same for both maps), initial conditions for the first and second maps. The values of the
parameters are same as given in the caption of Table 1.

Size Block length df Calculated χ2 value for Critical χ2

(m) in bits (2m−1) value at
(α1, x1, y1) (α2, x2, y2) (α3, x3, y3) (α4, x4, y4) (α5, x5, y5) α=0.05

2 3 07.0704 04.0752 00.2800 06.2368 04.1232 07.8147
N=10000 3 7 10.4647 05.8803 04.5506 12.6253 02.0015 14.0671

4 15 19.3856 11.8080 09.7088 23.2256 12.9088 24.9958
2 3 07.2981 05.5467 00.2976 02.0832 03.6299 07.8147

N=15000 3 7 04.7168 06.5920 07.9424 13.6160 03.9776 14.0671
4 15 16.8011 14.4032 06.6293 07.2779 08.9419 24.9958

Table 2: Shows the calculated χ2 values for serial test
for two different large sized binary sequences having
N=10000 and 15000 corresponding to five different sets
of parameter values. The parameters αi, xi and yi are
respectively the system parameter (same for both maps),
initial conditions for the first and second maps. The val-
ues of the parameters are same as given in the caption of
Table 1.

Size Parameter Calculated Critical χ2

χ2 value value at α=0.005

(α1, x1, y1) 3.21234
(α2, x2, y2) 2.10252

N=10000 (α3, x3, y3) 0.83838 5.9915
(α4, x4, y4) 3.28073
(α5, x5, y5) 1.82412
(α1, x1, y1) 2.09876
(α2, x2, y2) 3.50070

N=15000 (α3, x3, y3) 0.44396 5.9915
(α4, x4, y4) 2.83491
(α5, x5, y5) 1.55052

0.50, the distribution of the binary sequences, generated
by the CCCBG, are uniform and random. Beyond this
range of system parameter, the binary sequences may fail
in one or more of the statistical tests described above. So
for the value of α is between 0.49 and 0.50 and initial
condition for both cross-coupled chaotic tent maps in the
range [0,1], the CCCBG generates uniform and random
binary sequences. We have done the calculation in double
precision floating point numbers.

In addition to the statistical tests discussed above, the
most stringent randomness tests, namely the NIST suite
tests (issued by the National Institute of Standards and
Technology, special publication 800-22) have also been
performed to evaluate the randomness of arbitrarily long
binary sequences produced by the proposed CCCBG. The

Table 3: Shows the calculated Z-values for autocorrela-
tion test for two different large sized binary sequences
having N=10000 and 15000 corresponding to five differ-
ent sets of parameter values. The parameters αi, xi and
yi are respectively the system parameter (same for both
maps), initial conditions for the first and second maps.
The values of the parameters are same as given in the
caption of Table 1.

Size Parameter Calculated Z value
(α1, x1, y1) -0.56034
(α2, x2, y2) -0.49061

N=10000 (α3, x3, y3) 1.49187
(α4, x4, y4) 0.71089
(α5, x5, y5) -0.99124
(α1, x1, y1) -0.09834
(α2, x2, y2) -0.05720

N=15000 (α3, x3, y3) 0.95610
(α4, x4, y4) 0.64557
(α5, x5, y5) -0.22064

NIST statistical tests suite (which can be freely down-
loaded from website http://csrc.nist.gov/rng/) for ran-
dom sequences offers a battery of sixteen statistical tests.
These tests assess the presence of a pattern which, if de-
tected, would indicate that the sequence is non-random.
The properties of a random sequence can be described in
terms of probability. In each test a probability, called the
P-value, is extracted. This value summarizes the strength
of the evidence against the perfect randomness hypothe-
sis. A P-value larger than 0.01, means that the sequence
is considered to be random with a confidence of 99%. The
NIST suite tests were performed on five binary sequences,
each containing 15000 bits. The P-value as well as final
results obtained from the NIST suite for five different sets
are given in Table 5. The CCCBG successfully passes all
randomness tests of NIST suite.
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Table 5: Shows the P-values obtained from NIST suite for fourteen different tests. The P-values are obtained for five
different sets of parameters for each test. The parameters αi, xi and yi are respectively the system parameter (same
for both maps), initial conditions for the first and second maps. The values of the parameters are same as given in
the caption of Table 1.

Test Name P-values Conclusion
(α1, x1, y1) (α2, x2, y2) (α3, x3, y3) (α4, x4, y4) (α5, x5,y5)

Approximate
Entropy Test

0.113169 0.110449 0.032330 0.605333 0.080288 Success

Frequency
Test within Block

0.571881 0.174253 0.736170 0.480171 0.734041 Success

Cumulative
(forward) Sum Test

0.355713 0.360988 0.998247 0.261811 0.465759 Success

Cumulative
(reverse) Sum Test

0.850139 0.405249 0.991189 0.112111 0.360988 Success

Discrete Fourier
Transform Test

0.524923 0.915612 0.111961 0.791082 0.185326 Success

Frequency Test 0.556614 0.947919 0.947919 0.185927 0.273909 Success
Lempel-Ziv
Compression Test

1.000000 1.000000 1.000000 1.000000 1.000000 Success

Linear Complexity
Test

0.274193 0.485289 0.013392 0.438106 0.694499 Success

Longest Runs of
ones in a Block Test

0.706404 0.706404 0.706404 0.031775 0.295889 Success

Non-overlapping
Template Matching
Test

Success Success Success Success Success Success

Overlapping
Template Matching
Test

0.048349 0.932964 0.570019 0.622580 0.138687 Success

Rank Test 0.994872 0.473711 0.013928 0.187368 0.100749 Success
Run Test 0.008225f 0.626630 0.503137 0.296859 0.560992 Success

Serial Test P1 0.532974 0.191867 0.236357 0.291859 0.847115 Success
P2 0.658087 0.144224 0.185718 0.018966 0.484094

5 Conclusions

We have proposed a new binary sequence generator, called
cross-coupled chaotic random bit generator (CCCBG),
which exploits the interesting properties of a skew tent
map. By using the cross coupling, we forcefully change
the behavior of both the chaotic maps regularly. Hence
by knowing the system parameter and initial condition of
one of the chaotic map, one would not be able to identify
the behavior of the CCCBG. The initial condition and
system parameter for tent maps can also be generated by
using the external secret key [12, 13, 14]. To evaluate
the randomness and uniformity, we have employed four
different statistical tests i.e. frequency test, Poker test,
auto-correlation test and serial test on several large sized
binary sequences, generated by the CCCBG. These bi-
nary sequences pass all four tests successfully. Further,
the most stringent tests of randomness, the NIST suite
tests have also been performed to evaluate the random-

ness of the bit streams generated by the CCCBG. The
CCCBG successfully passes all the randomness tests of
NIST suite. We suggest the use of the random binary
sequences generated by the proposed CCCBG to design
new secure cryptosystems.
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