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Abstract

Public key encryption with keyword search (PEKS) en-
ables user Alice to send a secret key TW to a server that
will enable the server to locate all encrypted messages
containing the keyword W , but learn nothing else. In this
paper, we propose a new PEKS scheme based on bilinear
pairings. There is no pairing operation involved in the en-
cryption procedure and so our new PEKS scheme is more
efficient than the scheme of Boneh et.al. in [5]. Then,
we provide further discussions on removing secure chan-
nel from PEKS, and present an efficient secure channel
free PEKS scheme. Our two new schemes can be proved
secure in the random oracle model, under the appropriate
computational assumptions.
Keywords: Pairings, provable secure, public key encryp-
tion with keyword search

1 Introduction

In 2004, Boneh et al. [5] proposed the concept of pub-
lic key encryption with keyword search (PEKS) scheme
to enable one to search encrypted keywords without
compromising the security of the original data. Sup-
pose Bob wants to send Alice a message M with key-
words W1,W2, ..., Wn. Let pkA be Alice’s public key.
Bob encrypts M using a standard public key encryp-
tion E(.). He then appends to the resulting ciphertext
a list of PEKS ciphertext of each keyword. That is
E(M,pkA)||PEKS(W1, pkA)||...||PEKS(Wn, pkA). This
kind of encrypted messages may be stored in a server. Al-
ice can give the server a certain trapdoor TW through a
secure channel that enables the server to test whether one
of the keywords associated with the message is equal to
the word W of Alice’s choice. Given PEKS(W ′, pkA) and
TW , the server can test whether W = W ′. If W 6= W ′

the server learns nothing more about W ′.
Such PEKS scheme can be widely used in many prac-

tical applications. For instance, Boneh et al. [5] explain

that PEKS provides a mechanism that allows user Alice
to have his email server extract encrypted emails that con-
tain a particular keyword by providing a trapdoor corre-
sponding to the keyword, while the email server and other
parties excluding Alice do not learn anything else about
the email. Shortly after Boneh et al.’s work, Waters et
al. [9] showed that the PEKS scheme can be applied to
build encrypted and searchable audit logs.

The scheme of Boneh et al. [5] needs secure channel
to transmit trapdoors to the server. However, building a
secure channel is usually expensive. Very recently, Baek et
al. [2] discussed “removing secure channel”, and provided
a notion of secure channel free public key encryption with
keyword search (SCF-PEKS) scheme.

In this paper, we propose a new PEKS scheme based
on pairings. Its encryption procedure needs no pairing
operation. So our scheme is more efficient than that of
Boneh et.al’s. Then, we provide further discussions on
the notion and security model for SCF-PEKS scheme, and
present an efficient SCF-PEKS scheme. The new schemes
can be proved secure in the random oracle model, under
the appropriate computational assumptions.

The rest of this paper is organized as follows: In Sec-
tion 2, we recall some preliminary works. In Section 3,
we present a new PEKS scheme with efficiency discussions
and security proof. In Section 4, we provide further dis-
cussions on the formal model for SCF-PEKS schemes, and
present a new efficient SCF-PEKS scheme with provable
security. Finally, we end the paper with a brief conclu-
sion.

2 Preliminaries

2.1 Public Key Encryption with Key-
word Search

Definition 1. A public key encryption with Keyword
Search (PEKS) scheme consists of four polynomial-time
algorithms:
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• KeyGen: Take as input a security parameter λ,
generate a public/private key pair (pk, sk).

• Trapdoor : Take as input the receiver’s private key
sk and a word W , produce a trapdoor TW .

• PEKS : Take as input the receiver’s public key pk
and a word W , produce a searchable encryption of
W .

• Test: Take as input the receiver’s public key pk, a
searchable encryption C = PEKS(pk, W ′), and a
trapdoor TW = Trapdoor(sk,W ), output 1 (“yes”) if
W = W ′ and 0 (“no”) otherwise.

Consistency requires that for any keyword W ,
(pk, sk) = KeyGen(1λ), TW = Trapdoor(sk,W ), we
have Test(pk, PEKS(pk,W ), TW ) = 1.

In [5], Boneh et al. defined a security notion for PEKS
schemes– “indistinguishability of PEKS against chosen
keyword attack” (IND-CKA).

IND-CKA game:

• KeyGen: The challenger runs the KeyGen(λ) algo-
rithm to generate (pk, sk). It gives pk to the attacker.

• Phase 1: The attacker can adaptively ask the chal-
lenger for the trapdoor TW for any keyword W ∈
{0, 1}∗ of his choice.

• Challenge: At some point, the attacker A sends the
challenger two words W0,W1 on which it wishes to be
challenged. The only restriction is that the attacker
did not previously ask for the trapdoors TW0 or TW1 .
The challenger picks a random b ∈ {0, 1} and gives
the attacker C = PEKS(pk, Wb) as the challenge
PEKS ciphertext.

• Phase 2: The attacker can continue to ask for trap-
doors TW for any keyword W of his choice as long as
W 6= W0,W1.

• Guess: Eventually, the attacker A outputs b′ ∈
{0, 1} and wins the game if b = b′.

Such an adversary A is called an IND-CKA adversary.
A’s advantage in attacking the scheme E is defined as the
following function of the security parameter λ:

AdvE,A(λ) = |Pr[b = b′]− 1/2|.

The probability is over the random bits used by the chal-
lenger and the adversary.

Definition 2. A PEKS scheme E is IND-CKA secure
if for any polynomially time adversary A, AdvE,A(λ) is
negligible.

2.2 Bilinear Pairings

Let (G1, +) and (G2, ·) be two cyclic groups of prime order
q. ê : G1×G1 → G2 be a map which satisfies the following
properties [1, 11].

1) Bilinear: ∀P,Q ∈ G1, ∀α, β ∈ Zq, ê(αP, βQ) =
ê(P, Q)αβ ;

2) Non-degenerate: If P is a generator of G1, then
ê(P, P ) is a generator of G2;

3) Computable: There is an efficient algorithm to com-
pute ê(P, Q) for any P, Q ∈ G1.

Such an bilinear map is called an admissible bilinear pair-
ing [6]. The Weil pairings and the Tate pairings of elliptic
curves can be used to construct efficient admissible bilin-
ear pairings.

We review two complexity problems related to bilinear
pairings: the Bilinear Diffie-Hellman (BDH) problem [6]
and the Bilinear Diffie-Hellman Inverse (BDHI) problem
[4, 10]. Let P be a generator of G1, and a, b, c ∈ Z∗q .

• BDH problem: given P, aP, bP, cP ∈ G1, output
ê(P, P )abc. An algorithm A solves BDH problem
with the probability ε if

Pr[A(P, aP, bP, cP ) = ê(P, P )abc] ≥ ε,

where the probability is over the random choice of
generator P ∈ G∗1, the random choice of a, b, c ∈ Z∗q
and random coins consumed by A.

• k-BDHI problem: given (P, aP, a2P, ...akP ∈
(G∗1)

k+1, output ê(P, P )a−1
. An algorithm A solves

k-BDHI problem with the probability ε if

Pr[A(P, aP, a2P, ...akP ) = ê(P, P )a−1
] ≥ ε,

where the probability is over the random choice of
generator P ∈ G∗1, the random choice of a ∈ Z∗q and
random coins consumed by A.

We assume through this paper that BDH problem and
k-BDHI problem are intractable, which means that there
is no polynomial time algorithm to solve BDH problem
or k-BDHI problem with non-negligible probability.

3 A New PEKS Scheme from
Pairings

3.1 The Scheme

Let (G1, +) and (G2, ·) be two cyclic groups of prime order
q, ê : G1 × G1 → G2 be an admissible bilinear pairing,
H1 : {0, 1}∗ → Z∗q and H2 : G2 → {0, 1}log q be two hash
functions. P is a generator of G1, µ = ê(P, P ). The
scheme is described as following:

• KeyGen : Pick a random x ∈ Z∗q , compute X = xP ,
and output pk = X, and sk = x.



International Journal of Network Security, Vol.10, No.1, PP.25–31, Jan. 2010 27

• Trapdoor : Take as input secret key x and keyword
W , and output TW = (H1(W ) + x)−1P .

• PEKS : Take as input public key X and a key-
word W , select randomly r ∈ Z∗q , compute U =
rH1(W )P + rX, c = H2(µr) and output (U, c).

• Test : For input public key X, searchable encryp-
tion cipher-text (U, c) and trapdoor TW , test if
H2(ê(TW , U)) = c. If so, output 1; otherwise, output
0.

3.2 Consistency and Efficiency

Consistency of the scheme is easily proved as follows:

H2(ê(TW , U)) = H2(ê((H1(W ) + x)−1P, rH1(W )P + rX))

= H2(ê((H1(W ) + x)−1P, r(H1(W ) + x)P ))

= H2(ê(P, P )r)

= c.

Denote by M an ordinary scalar multiplication in
(G1, +), by E an Exp. operation in (G2, .), and by ê
a computation of the pairing. The hash function H1 :
{0, 1}∗ → G∗1 used by the scheme in [5] usually requires
a “Maptopoint operation” [6] to map a keyword to an el-
ement in G1. As discussed in [6], Maptopoint operation
(denoted by P ) is so inefficient that we can’t neglect it.
Do not take other operations into account. We compare
our scheme to the scheme in [5] in Table 1.

Note: The hash function used in our scheme which
maps a keyword to an element in Z∗q is so efficient that
we usually can neglect it.

The construction seems to be more efficient in perfor-
mance. Although fruitful achievements [3, 7] have been
made in enhancing the computation of pairings, the com-
putation of pairings is still time consuming. Our new
scheme requires no pairing operation in PEKS procedure.

Some general performance enhancements can also be
applied to our scheme. For pre-selected P ∈ G1 and
µ ∈ G2, there are efficient algorithms [8] to compute
rH1(IDX)P and µr for a random r ∈ Z∗q by pre-
computing and storing.

3.3 Security Proof

Theorem 1. Let F0 be an IND-CKA adversary that has
advantage ε(λ) within a time bound T (λ). Suppose F0

makes at most qT > 0 Trapdoor queries, q1 > 0 hash
function queries to H1 and q2 > 0 hash function queries
to H2. Let n = max{q1, 2qT }. Then there is an algorithm
F1 that solves the n-BDHI problem with advantage at least
ε(λ)/(nq2) with a running time O(T (λ)).

Proof. F1 is given input parameters of pairing
(q, G1, G2, ê) and a random instance (P, aP, a2P, ..., anP )
of the n-BDHI problem, where P is random in G∗1 and
a is a random in Z∗q . F1 simulates the challenger and
interacts with F0 as follows:

• KeyGen:

1) Randomly choose different h0, h1, ...hn−1 ∈
Z∗q , and compute f(x) =

∏n−1
i=1 (x + hi) =∑n−1

i=0 cix
i.

2) Compute Q =
∑n−1

i=0 cia
iP = f(a)P , aQ =∑n−1

i=0 cia
i+1P , and Q′ =

∑n−1
i=1 cia

i−1P . In the
(unlikely) situation where Q = 1G1 , there exists
an hi = −a, hence, F1 can solve the n-BDHI
problem directly and abort.

3) Compute fi(x) = f(x)/(x + hi) =
∑n−2

j=0 djx
j .

Obviously, (a + hi)−1Q = (a + hi)−1f(a)P =
fi(a)P =

∑n−2
j=0 dja

jP for 1 ≤ i ≤ n.

4) Randomly choose an index t with 1 ≤ t ≤ n,
set v = 0, and start by giving F0 the public key
Y = aQ− h0Q.

• Phase 1: H1-queries. F1 maintains a H1 list, ini-
tially empty. For a query W , if W already appears
on the H1 list in a tuple (W, g, D), F1 responds with
g. Otherwise, sets v = v + +, Wv = W , if v = t,
F1 sets gv = h0, Dv = ⊥ (⊥ means null); otherwise,
F1 selects a random n ≥ ι > 0 which has not been
chosen and sets gv = hι + h0, Dv = (a + hι)−1Q. In
both case, adds the tuple (Wv, gv, Dv) to H1 list and
responds with gv.

• Phase 1: H2-queries. F1 maintains a H2 list, ini-
tially empty. For a query ei, F1 checks if ei appears
on the H2 list in a tuple (ei, ui). If not, F1 picks a
random ui ∈ {0, 1}log q, and adds the tuple (ei, ui)to
the H2 list. F1 returns ui to F0.

• Phase 1: Trapdoor queries: For input Wi, with-
out any loss of generality, we can assume that Wi

has already been asked to oracle H1. F1 searches in
H1 list for (Wi, gi, Di). If Di = ⊥ then F1 aborts.
Otherwise, F1 responds with Di.

• Challenge: Once F0 decides that Phase 1 is over it
outputs two keywords W ′

0, W
′
1 on which it wishes to

be challenged. F1 responds as follows:
1. F1 runs the above algorithm for responding to H1-
queries twice to obtain (W ′

0, g
′
0, D

′
0) and (W ′

1, g
′
1, D

′
1).

If both D′
0 6= ⊥ and D′

1 6= ⊥ then F1 aborts. Oth-
erwise, F1 responds with the challenge ciphertext
(bQ, ξ) for random selected b ∈ Z∗q and ξ ∈ {0, 1}log q.
(Observe that if (bQ, ξ) is a cipher-text corresponding
to W ′

ι with ι ∈ {0, 1} satisfying D′
ι = ⊥, by defini-

tion, the decryption of C is ξ = H2(ê(TW ′
ι
, bQ)) =

H2(ê(a−1Q, bQ)) = H2(ê(Q,Q)a−1b).)

• Phase 2: H1-queries, H2-queries, Trapdoor
queries. F1 responds to these queries in the same
way it does in Phase 1 with the only restriction that
Wi 6= W ′

0,W
′
1 for Trapdoor queries.

• Guess: Eventually F0 produces its guess ι′ ∈ {0, 1}
for ι.
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Table 1: Compare our scheme with the scheme in [5]

schemes KeyGen Trapdoor PEKS Test
scheme in [5] 1M 1M + 1P 2M + 1P + 1ê 1ê

proposed 1M 1M 2M + 1E 1ê

F1 keeps interacting with F0 until F0 halts or aborts.
If F0 produces a guess ι′, F1 picks a random tuple
(ei, ui) from the H2 list. F1 computes α = eb−1

i , β =
ê(Q′, Q + c0P ) and outputs (α/β)c−2

0 as the solution to
the given instance of n-BDHI problem. (Note that if
α = ê(Q,Q)a−1

, then (α/β)c−2
0 = ê(P, P )a−1

.)
This completes the description of F1.
Suppose that in a real attack game F0 is given the pub-

lic key (Q,Y = aQ− h0Q) and F0 asks to be challenged
on words W ′

0 and W ′
1. In response, F0 is given a challenge

(bQ, ξ). Then, just as discussed in [5], in the real attack
game F0 issues an H2 query for either H2(ê(TW ′

0
, bQ)) or

H2(ê(TW ′
1
, bQ)) with probability at least 2ε(λ).

Now, assuming F1 does not abort, we know that F1

simulates a real attack game perfectly up to the mo-
ment when F0 issues a query for either H2(ê(TW ′

0
, bQ)) or

H2(ê(TW ′
1
, bQ)). Therefore, the value H2(ê(TW ′

ι
, bQ)) =

H2(ê(Q,Q)a−1b) will appear in the H2-list with probabil-
ity at least ε(λ). F1 will choose the correct pair with
probability at least 1/q2.

During the simulation, F1 does not abort in phases 1
or 2 because F0’s Trapdoor queries is 1 − qT /n. The
probability that F1 does not abort during the challenge
step is 2/n. Because n ≥ 2qT , we know that the prob-
ability that F1 does not abort during the simulation is
(1− qT /n)2/n ≥ 1/n.

Therefore, F1’s success probability overall is at least
ε(λ)/(nq2).

4 PEKS Schemes Without Secure
Channel

PEKS schemes need secure (encrypted and authenticated)
channels between users and servers. However, building a
secure channel is usually expensive. In [2], Baek et al.
suggested a formal model for secure channel free public
key encryption with keyword search (SCF-PEKS) scheme,
which defines SCF-PEKS scheme with six algorithms. In
this section, we provide further discussions on the formal
model for SCF-PEKS schemes, and present a new efficient
SCF-PEKS scheme with provable security.

4.1 New Formal Model for SCF-PEKS
Schemes

A SCF-PEKS scheme enables the sender to use the
server’s public key as well as the receiver’s public key to
generate PEKS ciphertexts. The receiver then can send

a trapdoor to retrieve data associated with the encrypted
keyword via a public channel.

Definition 3. A SCF-PEKS scheme consists of four
polynomial-time algorithms:

• KeyGen: Take as input a security parameter λ,
generate a public/private key pair (pk, sk). This al-
gorithm is used to generate key pairs for users (in-
cluding the receiver and the server).

• Trapdoor : Take as input the receiver’s private key
skr and a word W , produce a trapdoor TW .

• PEKS : Take as input the receiver’s public key pkr,
the server’s public key pks and a word W , produce a
searchable encryption of W .

• Test: Take as input the server’s secret key sks and
the receiver’s public key pkr, a searchable encryp-
tion S = PEKS(pkr, pks,W

′), and a trapdoor TW =
Trapdoor(skr,W ), output 1 (“yes”) if W = W ′ and
0 (“no”) otherwise.

Consistency requires that for any keyword W , re-
ceiver’s key pair (pkr, skr) = KeyGen(1λ), server’s key
pair (pks, sks) = KeyGen(1λ), TW = Trapdoor(skr,W ),
we have Test(sks, pkr, PEKS(pkr, pks, W ), TW ) = 1.

As to security, informally, we can say a SCF-PEKS
scheme is secure if it can achieve the following goals:

• The attacker without the trapdoors for given key-
words cannot tell the PEKS ciphertext is produced
from which keyword, even if he knows the server’s
secret key. We call this security property “indis-
tinguishability against chosen keyword attack with
server’s secret key” (IND-CKA-SSK).

• The attacker without the server’s private key cannot
make any decisions about the PEKS ciphertexts even
though the attacker gets all the trapdoors for the
keywords that it holds. We call this security prop-
erty “indistinguishability against chosen keyword at-
tack with all trapdoors” (IND-CKA-AT).

Formally, we define the following two security notions.

IND-CKA-SSK game:

• KeyGen: The challenger runs the KeyGen(λ) al-
gorithm twice to generate the server’s key pair
(pks, sks) and the receiver’s key pair (pkr, skr). It
gives pks, pkr, sks to the attacker.
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• Phase 1, Challenge, Phase 2, Guess: The at-
tacker A does these steps almost the same as that
in IND-CKA game, except that the challenge cipher-
text is C = PEKS(pkr, pks,Wb), where b ∈R {0, 1},
W0,W1 are the two words to be challenged.

The adversaryA is called an IND-CKA-SSK adversary.
A’s advantage is defined as:

AdvIND−CKA−SSK
E,A (λ) = |Pr[b = b′]− 1/2|.

The probability is over the random bits used by the chal-
lenger and the adversary.

Definition 4. A SCF-PEKS scheme E is IND-CKA-
SSK secure if for any polynomially time adversary A,
AdvIND−CKA−SSK

E,A (λ) is negligible.

IND-CKA-AT game:

• KeyGen: The challenger runs the KeyGen(λ) al-
gorithm twice to generate the server’s key pair
(pks, sks) and the receiver’s key pair (pkr, skr). It
gives pks, pkr to the attacker.

• Phase 1: The attacker can adaptively ask the chal-
lenger for the trapdoor TW for any keyword W ∈
{0, 1}∗ of his choice.

• Challenge: At some point, the attacker A sends the
challenger two words W0,W1 on which it wishes to be
challenged. The challenger picks a random b ∈ {0, 1}
and gives the attacker C = PEKS(pkr, pks, Wb) as
the challenge PEKS.

• Phase 2: The attacker can continue to ask for trap-
doors TW for any keyword W of his choice.

• Guess: Eventually, the attacker A outputs b′ ∈
{0, 1} and wins the game if b = b′.

The adversary A is called an IND-CKA-AT adversary.
A’s advantage is defined as:

AdvIND−CKA−AT
E,A (λ) = |Pr[b = b′]− 1/2|.

The probability is over the random bits used by the chal-
lenger and the adversary.

Definition 5. A SCF-PEKS scheme E is IND-CKA-
AT secure if for any polynomially time adversary A,
AdvIND−CKA−AT

E,A (λ) is negligible.

4.2 A New SCF-PEKS Scheme from pair-
ings

Let (G1, +) and (G2, ·) be two cyclic groups of prime order
q, ê : G1 × G1 → G2 be an admissible bilinear pairing,
H1 : {0, 1}∗ → Z∗q and H2 : G2 → {0, 1}log q be two hash
functions. P is a generator of G1, µ = ê(P, P ). The
scheme is described as following:

• KeyGen : Pick a random x ∈ Z∗q , compute X = xP ,
and output pk = X, and sk = x.

• Trapdoor : Take as input secret key x and keyword
W , output TW = (H1(W ) + x)−1P .

• PEKS : Take as input a receiver’s public key X, a
server’s public key Y and a keyword W , select ran-
domly r1, r2 ∈ Z∗q , compute U = r1H1(W )P + r1X,
V = r2P , c = H2(ê(r1P + r2U, Y )) and output
(U, V, c).

• Test : Take as input the receiver’s public key X, the
server’s private key y ∈ Z∗q , a searchable encryp-
tion cipher-text (U, V, c) and trapdoor TW , test if
H2(ê(yU, TW + V )) = c. If so, output “yes”; oth-
erwise, output “no”.

4.3 Consistency and Efficiency

Consistency of the scheme is easily proved as follows:

H2(ê(yU, TW + V )) = H2(ê(U, (H1(W ) + x)−1P + r2P )y)

= H2(ê(r1(H1(W ) + x)P,

(H1(W ) + x)−1P )y · ê(U, r2P )y)

= H2(ê(r1P, yP ) · ê(r2U, yP ))

= H2(ê(r1P + r2U, Y )) = c.

Denote by M an ordinary scalar multiplication in
(G1, +), by E an Exp. operation in (G2, .), by ê a compu-
tation of the pairing and by P a Maptopoint operation [6].
Do not take other operations into account. We compare
our scheme to the scheme in [2] in the following table.

4.4 Security Proof

Theorem 2. Let F0 be an IND-CKA-SSK adversary that
has advantage ε(λ) within a time bound T (λ). Suppose
F0 makes at most qT > 0 Trapdoor queries, q1 > 0 hash
function queries to H1 and q2 > 0 hash function queries
to H2. Let n = max{q1, 2qT }. Then there is an algorithm
F1 that solves the n-BDHI problem with advantage at least
ε(λ)/(nq2) with a running time O(T (λ)).

Proof. F1 is given input parameters of pairing
(q,G1, G2, ê) and a random instance (P, aP, a2P, ..., anP )
of the n-BDHI problem, where P is random in G∗1 and
a is a random in Z∗q . F1 simulates the challenger and
interacts with F0 as follows:

• KeyGen: Randomly choose different
h0, h1, ...hn−1 ∈ Z∗q , and compute f(x), Q, aQ,
Q′, (a + hi)−1Q for 1 ≤ i ≤ n the same as that in
the proof of Lemma 1. In the (unlikely) situation
where Q = 1G1 , there exists a hi = −a, hence, F1

can solve the q1-BDHI problem directly and abort.
2. Randomly choose an index t with 1 ≤ t ≤ n, sets
v = 0. Select a random y ∈ Z∗q and start by giving
F0 the reciver’s public key X = aQ − h0Q and the
server’s key pair (y, yQ).
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schemes KeyGen Trapdoor PEKS Test
scheme in [2] 1M 1M + 1P 1M + 1P + 1E + 2ê 2M + 1ê

proposed 1M 1M 5M + 1ê 1M + 1ê

• Phase 1: H1-queries, H2-queries, Trapdoor
queries. F1 responds to these queries the same way
as that in the proof of Lemma 1.

• Challenge: Once F0 decides that Phase 1 is over it
outputs two keywords W ′

0,W
′
1 on which it wishes to

be challenged. F1 responds as follows:
1. F1 runs the above algorithm for responding to H1-
queries twice to obtain (W ′

0, g
′
0, D

′
0) and (W ′

1, g
′
1, D

′
1).

If both D′
0 6= ⊥ and D′

1 6= ⊥ then F1 aborts.
Otherwise, F1 responds to the challenge ciphertext
(γ1Q, γ2Q, ξ) for randomly selected γ1, γ2 ∈ Z∗q and
ξ ∈ {0, 1}log q. (Observe that if (γ1Q, γ2Q, ξ) is a
cipher-text corresponding to W ′

ι with ι ∈ {0, 1} sat-
isfying D′

ι = ⊥, by definition, the decryption of C
is ξ = H2(ê(γ1Q,TW ′

ι
+ γ2Q)y) = H2(ê(γ1Q, a−1Q +

γ2Q)y) = H2(ê(Q,Q)γ1(a
−1+γ2)y).)

• Phase 2: H1-queries, H2-queries, Trapdoor
queries. F1 responds to these queries in the same
way as it does in Phase 1 with the only restriction
that Wi 6= W ′

0, W
′
1 for Trapdoor queries.

• Guess:Eventually F0 produces its guess ι′ ∈ {0, 1}
for ι.

F1 keeps interacting with F0 until F0 halts or aborts.
If F0 produces a guess ι′, F1 picks a random tuple
(ei, hi) from the H2 list and computes δ = ê(Q, γ2Q),
α = e

(γ1y)−1

i /δ, β = ê(Q′, Q+ c0P ) and outputs (α/β)c−2
0

as the solution to the given instance of n-BDHI prob-
lem. (Note that if ei = ê(Q, Q)γ1(a

−1+γ2)y, then α =
ê(Q,Q)a−1

, hence, (α/β)c−2
0 = ê(P, P )a−1

.)
This completes the description of F1. Just as discussed

in the proof of Theorem 1, F1’s success probability overall
is at least ε(λ)/(nq2).

Theorem 3. Let F0 be an IND-CKA-AT adversary that
has advantage ε(λ) within a time bound T (λ). Suppose
F0 makes at most qT > 0 Trapdoor queries, q1 > 0 hash
function queries to H1 and q2 > 0 hash function queries
to H2. Then there is an algorithm F1 that solves the BDH
problem with advantage at least 2ε(λ)/q2 with a running
time O(T (λ)).

Proof. F1 is given input parameters of pairing
(q, G1, G2, ê) and a random instance (P, aP, bP, cP )
of the BDH problem, where P is random in G∗1 and a, b, c
are random elements in Z∗q . F1 simulates the challenger
and interacts with F0 as follows:

• KeyGen: Select randomly x ∈ Z∗q and start by giv-
ing F0 the reciver’s public key X = xP and the
server’s public key aP .

• Phase 1: H1-queries. F1 maintains a H1 list, ini-
tially empty. For a query Wi, if Wi already appears
on the H1 list in a tuple (Wi, gi), F1 responds with
gi. Otherwise, F1 selects a random gi ∈ Z∗q , adds the
tuple (Wi, gi) to the H1 list and responds with gi.

• Phase 1: H2-queries. F1 maintains a H2 list, ini-
tially empty. For a query ei, F1 checks if ei appears
on the H2 list in a tuple (ei, hi). If not, F1 picks a
random hi ∈ {0, 1}log q, and adds the tuple (ei, hi)to
the H2 list. F1 returns hi to F0.

• Phase 1: Trapdoor queries: For input Wi, with-
out any loss of generality, we can assume that Wi

has already been asked to oracle H1. F1 searches
in H1 list for (Wi, gi) and F1 responds with Di =
(gi + x)−1P .

• Challenge: Once F0 decides that Phase 1 is over
it outputs two keywords W ′

0,W
′
1 on which it wishes

to be challenged. F1 runs the above algorithm for
responding to H1-queries twice to obtain (W ′

0, g
′
0)

and (W ′
1, g

′
1). Selects ι ∈ {0, 1} and responds

with the challenge ciphertext (g′ιbP + xbP, cP, ξ) for
random selected ξ ∈ {0, 1}log q. (Observe that if
(g′ιbP + xbP, cP, ξ) is a cipher-text corresponding to
W ′

ι , by definition, the test procedure of C is to test
ξ = H2(ê(g′ιbP + xbP, (g′ι + x)−1P + cP )a).)

• Phase 2: H1-queries, H2-queries, Trapdoor
queries. F1 responds to these queries in the same
way it does in Phase 1.

• Guess:Eventually F0 produces its guess ι′ ∈ {0, 1}
for ι.

F1 keeps interacting with F0 until F0 halts or
aborts. If F0 produces a guess ι′, F1 picks a ran-
dom tuple (ei, ui) from the H2 list. F1 computes
and outputs α = (ei/ê(aP, bP ))(g

′
ι+x)−1

as the solu-
tion to the given instance of BDH problem. (Note
that if ei = ê(g′ιbP + xbP, (g′ι + x)−1P + cP )a,
then ei = ê(bP, P )aê(P, P )bca(g′ι+x), hence α =
(ei/ê(aP, bP ))(g

′
ι+x)−1

= ê(P, P )abc.)
This completes the description of F1.
We know that in the real attack game F0 issues an

H2 query for H2(ê(g′0bP + xbP, (g′0 + x)−1P + cP )a)
H2(ê(g′1bP + xbP, (g′1 + x)−1P + cP )a) with probabil-
ity at least 2ε(λ). F1simulates a real attack game per-
fectly up to the moment when F0 issues a query for
H2(ê(g′ιbP + xbP, (g′ι + x)−1P + cP )a) with ι ∈ {0, 1}.
Therefore, the value ê(g′ιbP + xbP, (g′ι + x)−1P + cP )a

will appear in the H2-list with probability at least 2ε(λ).
F1 will choose the correct pair with probability at least
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1/q2. Therefore, F1’s success probability overall is at least
2ε(λ)/q2.

5 Conclusion

In this paper, first, we propose a new PEKS scheme based
on pairings and prove its security in the random oracle
model. The new scheme is more efficient than that of
Boneh et.al’s. Then, we provide further discussions on
the notion of SCF-PEKS scheme, give a formal security
model and present an efficient SCF-PEKS scheme. The
new SCF-PEKS scheme can also be proved to be secure
in the random oracle model.
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