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Abstract

To enlarge the detection capability of an incomplete be-
havior model, model generalization is necessary to make
every behavior signature identify more behavior instances.
In this paper, based on a general intrusion detection
framework, M out of N features in a behavior signature
are utilized to detect the behaviors (M ≤ N) instead of
using all N features. This is because M of N features
in a signature can generalize the behavior model to in-
corporate unknown behaviors, which are useful to detect
novel intrusions outside the known behavior model. How-
ever, the preliminary experimental results show that all
features of any signature should be fully utilized for intru-
sion detection instead of M features in it. This is because
the M of N features scheme will make the behavior identi-
fication capability of the behavior model lost by detecting
most behaviors as ‘anomalies’ or ‘alarms’.

Keywords: Intrusion detection, machine learning, model
evaluation, model generalization, security

1 Introduction

In general, there exist two approaches for detecting in-
trusions into computer systems and networked infor-
mation systems [6]: signature-based intrusion detection
(a.k.a. misuse detection), where an intrusion is detected
if its behavior matches existing intrusion signatures, and
anomaly-based intrusion detection, where an intrusion is
detected if the resource behavior deviates from known
normal behaviors significantly. From another aspect,
there are two behavior spaces in a computing resource for
intrusion detection (Figure 1.a): normal behavior space
and intrusive behavior space, and they are complemen-
tary to each other. Conceptually, signature-based intru-
sion detection is based on knowledge in intrusive behavior
space, and anomaly-based intrusion detection is based on
knowledge in normal behavior space [3]. Perfect detection
of intrusions can be achieved only if we have a complete

model of anyone of the two behavior spaces, because what
is not bad is good and vice versa ideally.

However, it is difficult to model any such behavior
space completely and correctly in reality, and Figure 1
(b) and (c) illustrate real behavior models for SID (i.e.,
intrusive behavior model) and for AID (i.e., normal be-
havior model) [3]. As the figure indicates, there exist
model errors in the behavior model for SID techniques as
well as AID ones. For example, a part of intrusive behav-
ior model in SID falls into normal behavior space. At the
same time, the intrusive behavior model cannot cover all
intrusive behavior space, and the normal behavior model
cannot cover all normal behavior space either.

To make up for the incompleteness in the existing au-
dit trails, most existing intrusion detection techniques
try to infer the unknown behaviors via model general-
ization [4, 5, 12, 14, 15, 17]. However, model general-
ization may lead to model errors (Figure 1), and model
generalization cannot solve the incompleteness problem
completely under most scenarios because it infers part
but not all of unknown behaviors. In this paper, as a
part of effort to analyze the problems in intrusion de-
tection, we evaluate the usefulness of the model gener-
alization led to by M of N features in a signature with
respect to its influence on the detection performance of
the behavior model. For example, suppose that there
exist one signature ‘height ∈ (156cm, 189cm], weight =
(45kg, 75kg], and Nationality = Singapore’. If all
N(=3) features are utilized, the instance ‘height =
174cm, weight = 65kg, and Nationality = China’ is not
identified by the signature. But if only any M(=2) fea-
tures are utilized, the signature will identify the instance.

Under our proposed framework, the evaluation will be
done as follows. First, the behavior signatures in the ex-
isting audit trails are extracted with all features. Sec-
ondly, with specified M , the behavior model is generalized
in the detection phase. In addition, an average detection
cost of any instance in the test audit trails is defined to
quantify the detection performance. As a special case,
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Figure 1: Behavior spaces and models

for the behavior model using all features, its average cost
serves as a baseline in evaluating the usefulness of the
scheme for intrusion detection. However, our preliminary
experimental results show the failure of the M of N fea-
tures scheme for intrusion detection. In other words, for
intrusion detection, all features should be utilized to iden-
tify an behavior using signatures in the behavior model(s).

In summary, our main contributions in this paper are
as follows. (1) New concepts, namely ‘feature range’,
‘compound feature’ and ‘behavior signature’, are intro-
duced to build a general intrusion detection framework.
(2) Model generalization led to by M of N features in a sig-
nature is discussed, and then an evaluation methodology
on it is designed. In addition, an average detection cost
function is defined to quantify the detection performance
for intrusion detection.

The remaining parts of this paper are organized as fol-
lows. Section 2 talks about the related work. Section 3
describes the formal intrusion detection framework in de-
tail. In Section 4, an intrusion detection methodology
using the M of N features scheme is introduced, and an
evaluation methodology is also designed. Experiments in
Section 5 are done to reveal the useless of the scheme
on intrusion detection. Lastly, we draw conclusions and
layout the future work in Section 6.

2 Related Work

Our research work in this paper is generally related to
model generalization in the behavior model. As indicated
above, for most intrusion detection techniques, the be-
havior model is trained from an existing audit trails [19].
If there are new instances in the detection phase, these
intrusion detection techniques should determine whether
they are anomalous/intrusive using the part of behavior
model generalized from the existing audit trails, which is
achieved by so-called model generalization.

First, the intrusion signatures in SID techniques can be
generalized to cover more behavior space, i.e., the intru-
sive behavior model in Figure 1 is extended. In [1], using
a fitness function which depends on false positive rate and
detection rate, the generalized signatures (represented by
a finite state transducer) is optimized by the evolution
programming. In general, the model generalization on
intrusion signatures can solve the intrusion variations de-
tection problem partially.

Secondly, the normal behavior model of AID tech-

niques can be generalized as well to detect novel instances,
and it can be done in several ways. Based on a distance
metric and a distance threshold [6, 7, 13, 16, 18], the
instances in the existing audit trails are clustered unsu-
pervisedly, and the new instances are labeled by the ex-
isting instances in their clusters. In statistical methods
for intrusion detection [9, 10, 12, 14, 18], the (statistical)
resource usage profiles are mined from the existing au-
dit trails. The novel instances are detected according to
whether they fall into these profiles. Among these two
styles, the existing audit trails are modeled inexactly to
accommodate more resource behaviors in the profiles, and
thus to achieve the model generalization.

However, most of past works only gave the whole ef-
ficiency of an intrusion detection technique with such
model generalization. Even though the model general-
ization is critical for intrusion detection, there is not any
evaluation about whether the model generalization within
these intrusion detection techniques is useful to enhance
their efficiency. Most significantly, even though it is criti-
cal for the behavior model, there are no answer to the fol-
lowing question: what extent of the behavior model should
be generalized for intrusion detection? This is due to the
difficulty of these techniques in splitting the efficiency led
to only by model generalization. Fortunately, the diffi-
culty can be solved in our proposed framework. Our ob-
jective in this paper is to do such evaluation, and then to
find its implications on intrusion detection.

3 A Formal Intrusion Detection

Framework

Summarized from the principles of signature-based
and anomaly-based intrusion detection [19], any in-
trusion detection system builds the models of the re-
sources/processes using a set of features, or a feature vec-
tor FV = {µ1, µ2, . . . , µn}, where µi is a feature in the
feature set. Every feature in the feature vector can be
one property at the current timestamp (e.g., the fields in
the current packet), or one context-sensitive property be-
fore the current timestamp (e.g., the system-call events in
stide [8]). Thus, the feature vector is general enough to
represent most (or even all) inputs of intrusion detection
systems.

In general, a feature µi in the feature vector can be
categorized into nominal, discrete or continuous one. Dis-
crete and continuous features are ordinal feature types,
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such that the feature values can be ordered according to
their values, and a distance can be determined between
any two values according to some distance metric. On
the other hand, nominal features are not quantifiable and
hence do not possess any order amongst them. Discrete
features are isolated points in a continuous spectrum of
values. While the number of values for a continuous fea-
ture can be infinitely many, the number of discrete values
is often few or finite. A feature vector for intrusion detec-
tion can contain any number of nominal, discrete, and/or
continuous features.

Example 3.1 Let us assume that a feature vector con-
sists of three features µ1, µ2 and µ3, thus, FV =
{µ1, µ2, µ3}. Specifically, within the context of network
intrusion detection, µ1 is the ‘service’, µ2 is the ‘num-

ber of urgent packets’, and µ3 is the ‘SYN error rate’ in
a network session. The example instances of the feature
vector are listed below in Table 1, and it will be utilized
to illustrate the following definitions and concepts in our
framework. Note that the ‘status’ for every instance in
this table gives the condition of the process when collect-
ing the instance. Obviously, in FV = {µ1, µ2, µ3}, µ1 is

Table 1: The example instances
µ1 µ2 µ3 status

TCP 1 0.01 normal
ICMP 2 0.04 normal
HTTP 6 0.10 intrusion3

TCP 4 0.08 intrusion1

UDP 5 0.06 intrusion2

UDP 8 0.14 intrusion4

HTTP 6 0.10 normal
UDP 7 0.02 normal
UDP 8 0.14 intrusion2

a nominal feature, µ2 is a discrete feature, and µ3 is a
continuous feature.

3.1 Definitions and Concepts

For any feature µ in the audit trails, its meaningful do-
main will be called its value space or feature space, de-
noted as Ω(µ). Any value of the feature µ in the audit
trails is defined as a feature value νj(j ≥ 0) in its value
space. Based on whether it is found in normal audit trails
or in the audit trails left by intrusions, a feature value
is labeled as N: normal, S: suspicious, or A: anomalous.
More specifically, if a feature value occurs only in the nor-
mal audit trails, it is a normal feature value. If it occurs
only in the anomalous audit trails, for example, the in-
trusion signatures in SID, it is labeled as an anomalous
feature value. Otherwise, i.e., if it occurs in both normal
and anomalous audit trails, it is labeled as a suspicious
feature value. For brevity, we will refer to the normal,
suspicious, or anomalous labels as the NSA label of the
feature value νj , denoted as Λ(νj).

Example 3.2 Take the same scenario as example 3.1.
For the feature µ2 in Table 1, Ω(µ2) = [1, 8], Λ(1) = ‘N ′,
and Λ(4) = ‘A′. For the feature µ1 in the same table,
Λ(ICMP ) = ‘N ′, and Λ(TCP ) = ‘S′.

3.1.1 Feature Range

Definition 3.1 (feature range) For a feature µ, a
feature range τ(ν1, ν2) is the range between any two fea-
ture values ν1 and ν2 in its feature space, in which all of
its feature values fall between ν1 and ν2.

For a discrete or continuous feature, the feature range
τ(ν1, ν2) includes all the feature values falling between ν1

and ν2, i.e., τ(ν1, ν2) = [ν1, ν2]. For a nominal feature,
every feature value is independent. Thus, each nominal
feature value is referred to as a feature range in this paper,
i.e., ν1 = ν2, and τ(ν1, ν2) = [ν1] = [ν2]. In addition, if a
feature value νj is within the bounds of a feature range,
we say that it falls within the feature range, denoted as
νj ∈ τ(ν1, ν2). For convenience of later description, two
additional notations are given: lower(τ(ν1, ν2)) = ν1, and
upper(τ(ν1, ν2)) = ν2.

Example 3.3 Within the context of network intrusion
detection in Table 1, for the nominal feature µ1, [TCP] is
one of its feature ranges. For the discrete feature µ2, [1, 5]
is one of its feature ranges. For the continuous feature
µ3, [0.09, 0.12] is one of its feature ranges. Furthermore,
2 ∈ [1, 5], 0.10 ∈ [0.09, 0.12], and TCP ∈ [TCP ].

Similarly, the concept of NSA labels (i.e., N: normal, S:
suspicious and A: anomalous) can be extended to the
feature ranges as follows. For the feature range τ(ν1, ν2),

Λ(τ (ν1, ν2)) = ‘N ′ ⇔ ∀ν(ν ∈ τ (ν1, ν2)) ∧ (Λ(ν) = ‘N ′)

Λ(τ (ν1, ν2)) = ‘A′ ⇔ ∀ν(ν ∈ τ (ν1, ν2)) ∧ (Λ(ν) = ‘A′)

Λ(τ (ν1, ν2)) = ‘S′ ⇔ ∃ν∃ν
′(ν ∈ τ (ν1, ν2) ∧ Λ(ν) = ‘A′)

∧(ν′ ∈ τ (ν1, ν2) ∧ Λ(ν′) = ‘N ′)

With respect to an user-defined strategy, the feature
space Ω(µ) can be split into a set of feature ranges
{τ1

µ, τ2
µ, . . . , τm

µ }, such that the neighboring feature ranges

(such as τ j
µ and τ j+1

µ ) have different NSA labels, and there

is no common feature value ν, which falls into τ j
µ and

τk
µ at the same time (j 6= k). The feature ranges for

the three features in Table 1 are illustrated in Figure 2,
in which their NSA labels are indicated by their colors
of feature values or feature ranges. Specifically, ‘white’
indicates ‘normal’, ‘gray’ for ‘suspicious’ and ‘black’ for
‘anomalous’. Furthermore, the circles represent the fea-
ture values in the audit trails, and the squares represent
the feature ranges outputted from the specified splitting
strategy.

Finally, by grouping together the feature ranges with
identical NSA labels, we can partition the feature space
into three feature subspaces: normal, suspicious and
anomalous. We will denote the normal feature subspace
of a feature µ as N(µ), in which all its feature ranges
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come from the normal audit trails. Similarly, the suspi-
cious and anomalous feature subspaces of µ are denoted
as S(µ) and A(µ) respectively. Thus we have,

N(µ) = {τ j
µ| 1 ≤ j ≤ m, Λ(τ j

µ) = ‘N ′}

S(µ) = {τ j
µ| 1 ≤ j ≤ m, Λ(τ j

µ) = ‘S′}

A(µ) = {τ j
µ| 1 ≤ j ≤ m, Λ(τ j

µ) = ‘A′}

Where, obviously, Ω(µ) = N(µ) ∪ S(µ) ∪ A(µ).

Example 3.4 As indicated in Figure 2, the following fea-
ture ranges can be deduced from the example instances in
Table 1.

TCP ICMP UDP HTTP
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Figure 2: Feature ranges

• For µ1,
τ1
µ1

= [TCP ], N&I1 ⇒ Λ(τ1
µ1

) = ‘S′;
τ2
µ1

= [ICMP ], N ⇒ Λ(τ2
µ1

) = ‘N ′;
τ3
µ1

= [UDP ], N&I2&I4 ⇒ Λ(τ3
µ1

) = ‘S′;
τ4
µ1

= [HTTP ], N&I3 ⇒ Λ(τ4
µ1

) = ‘S′;

• For µ2,
τ1
µ2

= [1, 2], N ⇒ Λ(τ1
µ2

) = ‘N ′;

τ2
µ2

= [3, 5], I1&I2 ⇒ Λ(τ2
µ2

) = ‘A′;
τ3
µ2

= [6, 6], N&I3 ⇒ Λ(τ3
µ2

) = ‘S′;
τ4
µ2

= [7, 7], N ⇒ Λ(τ4
µ2

) = ‘N ′;
τ5
µ2

= [8, 8], I2&I4 ⇒ Λ(τ5
µ2

) = ‘A′;

• For µ3,
τ1
µ3

= [0.01, 0.05), N ⇒ Λ(τ1
µ3

) = ‘N ′;
τ2
µ3

= [0.05, 0.09), I1&I2 ⇒ Λ(τ2
µ3

) = ‘A′;
τ3
µ3

= [0.09, 0.14], N&I3&I4 ⇒ Λ(τ3
µ3

) = ‘S′;

3.1.2 Compound Feature

The concept of NSA labeling and subspace partitioning
can easily be extended to more than one feature. For
convenience, we will refer to a single feature as an atomic
feature and a combination of multiple features as a com-
pound feature. We formally define a compound feature as
follows:

Definition 3.2 (compound feature) For any two fea-
tures µ1 and µ2 in a specified feature vector, the feature
space Ω(µ12) of the compound feature µ12 is defined as a
subset of the cartesian product of Ω(µ1) and Ω(µ2), such
that each element in this set actually occurs in the au-
dit trails of the relevant resource. In other words, if the
ordered pair (a, b) ∈ Ω(µ12), then any compound feature
value (a, b) must have occurred in some audit trails of the
corresponding resource.

Ω(µ12) = {(a, b)|a ∈ Ω(µ1), b ∈ Ω(µ2),

(a, b) is in audit trails}

Intuitively, similar to the atomic features, the feature
ranges of the new compound feature µ12 can also be la-
beled as normal, suspicious and anomalous ones, i.e., they
have the NSA labels. Furthermore, just like the atomic
feature space, a compound feature space can be parti-
tioned into three feature subspaces i.e., Ω(µ12) = N(µ12)
∪ S(µ12) ∪ A(µ12). To determine the membership of a
given feature range τ i

µ12
to one of the three subspaces, the

following intuitive rules are applied:

τ
i
µ12

∈ N(µ12) ⇔ ∀(a, b) ∈ τ
i
µ12

(a ∈ N(µ1) ∨ b ∈ N(µ2)

∨(a ∈ S(µ1) ∧ b ∈ S(µ2) ∧ Λ((a, b)) = ‘N ′))

τ
i
µ12

∈ A(µ12) ⇔ ∀(a, b) ∈ τ
i
µ12

(a ∈ A(µ1) ∨ b ∈ A(µ2)

∨(a ∈ S(µ1) ∧ b ∈ S(µ2) ∧ Λ((a, b)) = ‘A′))

τ
i
µ12

∈ S(µ12) ⇔ ∀(a, b) ∈ τ
i
µ12

(a ∈ S(µ1) ∧ b ∈ S(µ2)

∧Λ((a, b)) = ‘S′))

It is worth noting that the suspicious feature ranges in
Ω(µ12) can potentially shrink with respect to the original
feature ranges in the component features as the combina-
tions of the ‘suspicious’ feature ranges may be ‘normal’ or
‘anomalous’.

Since the compound feature built from two atomic fea-
tures shows the same property as any atomic feature in
the feature vector, it can be treated like an atomic fea-
ture to build higher order compound features. Using this
recursive procedure, the feature vector FV for intrusion
detection can be converted into an equivalent n-order
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compound feature µ1...n with normal N(µ1...n), suspicious
S(µ1...n) and anomalous subspaces A(µ1...n).

Example 3.5 The features in Table 1 can be compounded
as follows.

• µ23 = µ2 × µ3

τ1
µ23

= τ1
µ2

× τ1
µ3

, N ⇒ Λ(τ1
µ23

) = ‘N ′;
τ2
µ23

= τ2
µ2

× τ2
µ3

, I1&I2 ⇒ Λ(τ2
µ23

) = ‘A′;
τ3
µ23

= τ3
µ2

× τ3
µ3

, N&I3 ⇒ Λ(τ3
µ23

) = ‘S′;
τ4
µ23

= τ4
µ2

× τ1
µ3

, N ⇒ Λ(τ4
µ23

) = ‘N ′;
τ5
µ23

= τ5
µ2

× τ3
µ3

, I2&I4 ⇒ Λ(τ5
µ23

) = ‘A′;

• µ123 = µ1 × µ23

τ1
µ123

= τ1
µ1

× τ1
µ23

, N ⇒ Λ(τ1
µ123

) = ‘N ′;
τ2
µ123

= τ2
µ1

× τ1
µ23

, N ⇒ Λ(τ2
µ123

) = ‘N ′;
τ3
µ123

= τ1
µ1

× τ2
µ23

, I1 ⇒ Λ(τ3
µ123

) = ‘A′;
τ4
µ123

= τ3
µ1

× τ2
µ23

, I2 ⇒ Λ(τ4
µ123

) = ‘A′;
τ5
µ123

= τ4
µ1

× τ3
µ23

, N&I3 ⇒ Λ(τ5
µ123

) = ‘S′;
τ6
µ123

= τ3
µ1

× τ4
µ23

, N ⇒ Λ(τ6
µ123

) = ‘N ′;
τ7
µ123

= τ3
µ1

× τ5
µ23

, I2&I4 ⇒ Λ(τ7
µ123

) = ‘A′;

At the same time, the compounding operations can be il-
lustrated as in Figure 3.

[1,2] [3,5] [6,6] [7,7] [8,8]

[0.01,0.05] (0.09,0.14](0.05,0.09]

[1,2] and
[0.01,0.05]

[7,7] and
[0.01,0.05]

[3,5] and
(0.05,0.09]

[6,6] and
(0.09,0.14]

[8,8] and
(0.09,0.14]

2
µ

3
µ

23
µ

(a) Compounding between two atomic features

[TCP] [ICMP] [UDP] [HTTP]

[1,2] and
[0.01,0.05)

[7,7] and
[0.01,0.05)

[3,5] and
[0.05,0.09)

[6,6] and
[0.09,0.14]

[8,8] and
[0.09,0.14]23

µ

1
µ

123
µ [1,2] and

[0.01,0.05)
and [TCP]

[3,5] and
[0.05,0.09)
and [TCP]

[1,2] and
[0.01,0.05)
and [ICMP]

[7,7] and
[0.01,0.05)
and [UDP]

[3,5] and
[0.05,0.09)
and [UDP]

[8,8] and
[0.09,0.14]
and [UDP]

[6,6] and
[0.09,0.14]
and [HTTP]

(b) Compounding between a compound feature and an atomic fea-
ture

Figure 3: compounding operations between feature ranges

Finally, the feature subspaces determined by the in-
stances in Table 1 are:

N(µ123) = {τ 1
µ123

, τ
2
µ123

, τ
6
µ123

}

S(µ123) = {τ 5
µ123

}

A(µ123) = {τ 3
µ123

, τ
4
µ123

, τ
7
µ123

}

As a result, the formal foundations of intrusion detec-
tion can be built on a n-order compound feature without
regard to the size of the feature vector n. In our subse-
quent discussion about the performance of intrusion de-
tection techniques, we will stick to a single (compound)
feature.

3.1.3 Behavior Signature

To do intrusion detection, every instance of the feature
vector will be evaluated whether it matches the existing
behavior model. In our framework, the behavior model of
the resource is constituted by behavior signatures, which
are defined as follows.

Definition 3.3 (behavior signature) Assuming that
there exists a feature vector FV = {µ1, µ2, . . . , µn}, the
feature ranges of every feature are determined beforehand.
A behavior signature is a feature range of the compound
feature µ1...n with its NSA label. In other words, the be-
havior signature is the combination of feature ranges of
all features in the feature vector labeled by its statuses in
the existing audit trails.

As indicated in the above definition, every behavior sig-
nature represents a state of the resource at a specified
time or point. In a special case with n = 1, the behav-
ior signature can be a feature value in the existing audit
trails. For example, the TCP port ‘139’ is ever deter-
mined as ‘anomalous’ due to the worm ‘Nimda’. Most
importantly, to label an instance in the detection phase,
the behavior signature possesses the same NSA label as
its corresponding feature range of µ1...n.

Example 3.6 Take the same scenario in Table 1,
one behavior signature of the feature vector is
([ICMP ], [1, 2], [0.01, 0.05)). Obviously, the total
number of possible behavior signatures in this example is
4 × 5 × 3 = 60.

For brevity, the term ‘behavior signature’ will be simpli-
fied as ‘signature’ within the context of this paper.

4 Intrusion Detection via Signa-

tures

All the signatures collected from the training audit trails
constitute the behavior model for intrusion detection. To
achieve it, an splitting strategy is designed as follows to
build the feature ranges for every feature. For nominal
features, the splitting strategy do nothing except building
one feature range for every feature value. For every dis-
crete/continuous feature, an initial feature range is built
for every feature value. Two initial feature ranges are
neighboring if there are no feature values between them
in the audit trails.

Specific for every discrete feature, the unknown fea-
ture subrange between any two neighboring initial fea-
ture ranges is split and combined into these two initial
feature ranges as follows. If the size of the unknown fea-
ture subrange is an odd number n, (n − 1)/2 of it will
combine into every side, and the left 1 is assigned to one
side randomly. If the size is an even number n, n/2 of
it will combine into every side. In contrast, specific for
every continuous feature, the unknown feature subrange
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between any two neighboring initial feature range will be
split equally and combined into both sides.

In the following step, if two neighboring feature ranges
have the same NSA label, they will be combined into a
single feature range by expanding its range size but with
the NSA label. This can economize the storage space for
the ultimate behavior models.

4.1 Detecting Behaviors Using M of N

Features in a Signature

In our evaluation methodology, an instance in the test
audit trails will be detected as follows. Utilizing the fea-
ture ranges of every feature, a temporal signature will be
formed for the instance. If it matches any signature in the
behavior model with M among N features, the status list
of the signature will be inserted into the status list of the
temporal signature. Obviously, the status list of the tem-
poral signature is empty initially. After comparing with
all signatures in the behavior model, the detection results
for the instance is aggregated into its status list.

According to the status list and the nature of the in-
stance, the following average cost for every instance in
the test audit trails is calculated to quantify the detection
performance. For a normal behavior, it will be detected
as an anomaly if the status list include other status(es)
other than ‘normal’. Otherwise, it is detected as ‘normal’.
For a intrusive behavior, it will be detected as the same
intrusion if the status list is identical to the status of the
behavior, and it will be detected as normal if the status
list only include the ‘normal’ status. Otherwise, it will be
detected an an ‘anomaly’.

4.2 To Measure the Detection Perfor-

mance

The two main objectives of intrusion detection are (1)
to detect the intrusions correctly (as anomalies), and (2)
to identify the behaviors correctly (i.e. normal behaviors
or its original intrusions). With respect to the detection
results, every instance in the test audit trails will be as-
signed a cost value as the detection performance of the
behavior model to it [11]. Specifically, if the normal in-
stance is detected as ‘normal ’, the cost is 0, otherwise,
the cost is 3. Simultaneously, if the intrusive instance is
identified as its original intrusion label, the cost is 0. If
the intrusive instance is detected as an anomaly, the cost
is 1. If the intrusive instance is detected as ‘normal’, the
cost is 3.

Suppose that there are T instances in the test audit
trails. According to the detection results, several statis-
tics are further defined as follows.

• #(N,N)(M): the number of normal instances de-
tected as ‘normal’;

• #(N,A)(M): the number of normal instances, but
detected as ‘anomalies’;

• #(N,∗)(M): the number of normal instances in the
test audit trails;

• #(I,I)(M): the number of intrusive instances de-
tected as their original intrusions;

• #(I,A)(M): the number of intrusive instances de-
tected as ‘anomaly’;

• #(I,N)(M): the number of intrusive instances de-
tected as ‘normal’;

• #(I,∗)(M): the number of intrusive instances in the
test audit trails.

where, it is obvious,

#(N,∗)(M) = #(N,N)(M) + #(N,A)(M)

#(I,∗)(M) = #(I,I)(M) + #(I,A)(M) + #(I,N)(M)

T = #(N,∗)(M) + #(I,∗)(M)

In the detection results, actually, #(N,A)(M) is the size
of false positives, and #(I,N)(M) is the size of false neg-
atives.

With respect to specific M , the average cost of every
instance in the test audit trails is defined as:

cost(M) = (#(N,A)(M)×3+#(I,N)(M)×3+#(I,A)(M)×1)×
1

T
(1)

From above equation, with the increase of cost(M), the
detection performance with the parameter M becomes
worse. Obviously, the average cost at M = N is the base-
line for the detection performance. If cost(M) > cost(N),
the efficiency for intrusion detection has been degraded by
such M of N scheme. Otherwise, it is useful for intrusion
detection. An efficient intrusion detection technique will
cause smaller average cost for every instance.

5 Experiments

We have chosen a typical dataset for network intrusion
detection from KDD CUP 1999 contest, in which every
record is an instance of a specific feature vector collected
from the audit trails. This is because the dataset meets
the requirements of our formal framework: labeled au-
dit trails and intrusion-specific feature vector. The spec-
ifications of the dataset are listed as follows: training-
4898431 records, test-311029 records. Table 2 lists all
the features used in our experiments. For a detailed
description of the datasets, please refer to ‘http://www-
cse.ucsd.edu/users/elkan/clresults.html ’.

5.1 Evaluating the M of N Scheme

In our experimental evaluations, N = 41 and the param-
eter M is variable from 41 to 30. The behavior model is
first built from the training audit trails. Then, every in-
stance in the test audit trails is detected with respect to
specific M , and the detection performance is quantified
by the average cost of every instance within the detection
results.
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Table 2: Features in the connection records
Types (41) Features

nominal (9) protocol type, service, flag, land, logged in, root shell, su attempted,
is hot login, is guest login

discrete (15) duration, src bytes, dst bytes, wrong fragments, urgent, hot,
num failed logins, num compromised, num root, num file creations,
num shells, num access files, num outbound cmds, count, srv count

continuous (17) serror rate, srv serror rate, rerror rate, srv rerror rate, same srv rate,
diff srv rate, srv diff host rate, dst host count, dst host srv count,
dst host same srv rate, dst host diff srv rate, dst host same src port rate,
dst host srv diff host rate, dst host serror rate, dst host srv serror rate,
dst host rerror rate, dst host srv rerror rate

5.1.1 Experimental Results

The change of average cost with N-M
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Figure 4: The influence of M of N features scheme

The detection performance baseline with M = 41 is
cost(41) = 0.228. For the sake of comparison, we use
N − M as the horizontal axis in Figure 4, in which the
influence of M of N features scheme on intrusion detec-
tion is illustrated. It is obvious that the average cost of
every instance is decreased with the increase of N − M ,
i.e. with the decrease of M . In other words, even though
the M of N features scheme can generalize the behavior
model, it will degrade the detection performance for in-
trusion detection. Therefore, the scheme cannot enhance
the detection performance in intrusion detection.

5.1.2 The Statistics about the Detection Results

In Table 3, the detection results are detailed with respect
to varying M . In general, an efficient intrusion detec-
tion technique should identify most (normal and intru-
sive) behaviors, and the identification ability is indicated
by the numbers in #(N,N)(M) and #(I,I)(M). However,
in Table 3, these two numbers are decreased with the de-
crease of M . In other words, with the decrease of the
parameter M , the identification capability is degraded,
and most normal and intrusive behaviors will be detected
as ‘anomalies’.

As an extreme case, all the behaviors will be detected
as ‘anomalies’. From another perspective, with the in-
crease of M , the behavior model becomes more random.

This case will also occur if the behavior model is empty. In
other words, the behavior model with more generalization
caused by the M of N features scheme is almost no use for
intrusion detection. In Table 3, when M ≤ 36, almost all
normal behaviors are detected as false positives (i.e., false
alarms). This phenomenon will deteriorate the higher
false alarm rate, which already problematic to make in-
trusion detection inefficient due to base-rate fallacy [2]. In
summary, the M of N feature scheme will largely degrade
the detection performance for intrusion detection.

6 Conclusions and Future Work

In this paper, we first present a formal intrusion detec-
tion framework based on a general framework. Using
the framework, the M of N feature scheme is evaluated
with respect to the detection performance for intrusion
detection. To achieve it, we also propose a average cost
function to quantify the detection performance for intru-
sion detection. The experimental results show that, even
though the M of N scheme can generalize the behavior
model to cover more unknown behaviors, it will degrade
the detection performance for intrusion detection by trig-
gering more false alarms. Ultimately, with the increase
of M , the behavior model becomes so random that it is
equal to an empty behavior model. More specifically, the
identification ability of every signature will be lost with
the decrease of M , i.e., with more generalization in the
behavior model. The conclusion is critical for intrusion
detection since all the features in a signature should be
used to identify a (normal/intrusive) behavior, which does
not follow our intuition.
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