
International Journal of Network Security, Vol.1, No.2, PP.103–109, Sep. 2005 (http://isrc.nchu.edu.tw/ijns/) 103

Access Control in Networks Hierarchy:

Implementation of Key Management Protocol

Nicolas Sklavos and Odysseas Koufopavlou
(Corresponding author: Nicolas Sklavos)

Electrical & Computer Engineering Dept., University of Patras

Patras, Greece (Email: nsklavos@ieee.org)

(Received June 25, 2005; revised and accepted July 6, 2005)

Abstract

The special needs for cryptography, of both wired and
wireless networks, have attracted the researchers’ major
interest in the design of new security schemes. This work
deals with the access control in network hierarchy. More
analytically, an efficient architecture and the implemen-
tation of a key management protocol are proposed in this
paper. This protocol main philosophy is centered in the
usage of hash functions. Alternative hash functions have
been implemented and studied, in order to select between
the most efficient proposed architecture, concerning both
performance and allocated resources. Finally the dynamic
access of the system is presented. The proposed system
could be applied efficiently in networks with multi-nodes
and multi-users authentication demands, providing high
speed performance and high level security strength.

Keywords: Access control, hardware integration, hash
functions, key management, network authentication

1 Introduction

Access control plays an important role in the area of in-
formation security, which ensures that any access to avail-
able data and offered services are authorized [13, 15]. In
a network hierarchy, a Central Authority (CA) assigns a
key for each node. The problems that are rising upon to
this issue is how the users of higher level nodes, can derive
the keys of their direct of indirect child nodes.

The first possible solution that someone can apply to
this problem is a user to keep all the keys of its direct
and indirect child nodes. This solution has hard allo-
cated resources cost, in terms of memory cells or regis-
ters, especially in the cases of networks with high com-
plexity hierarchy. This also causes problems concerning
the key management function and the supported security
level also.

Akl and Taylor [1, 2] proposed another solution to this
problem, based on a cryptographic approach. The advan-

tage of this security scheme is that the key generation and
derivation algorithms are simple enough. The main dis-
advantage of this scheme is that it is centered in the use
of public parameters. The last ones have to be selected
properly in order to guarantee security and at the same
time a lot of resources are needed for storage purposes.

Nowadays there are many proposed solutions for mul-
tilevel security hierarchical key management scheme and
secure group communications [6, 7, 8, 10, 17, 18]. Al-
most all of them have major disadvantages. They can not
support efficiently the dynamic access control problems.
Furthermore, in some cases they have hard area resources
requirements, for the public parameters storage.

In 2004 Cungang Yang et. al. [19] proposed a flexi-
ble and efficient solution to access control in hierarchy is
based on the one-way hash functions. Today hash func-
tions are widely spread and are applied to many different
cryptographic applications [14]. In this work, a crypto-
graphic key management solution in the hierarchy is pro-
posed. Each key of a node is calculated through one-way
hash functions [3] locally. Comparisons with previous
works shows that this scheme provides a more efficient
method to deal with the dynamic access control problems
such as adding/deleting nodes, or modifying relationships
between nodes in the network hierarchy. Furthermore,
this key management scheme uses less storage resources
compared with previous introduced works.

In this paper, an efficient architecture and a VLSI im-
plementation are presented for the key management pro-
tocol. According to our knowledge this is the first work
on hardware integration, concerning this certain key man-
agement protocol regarding to network hierarchy. Differ-
ent hash functions has been implemented and examined
in the terms of performance and allocated area resources.
An FPGA device has been used as a hardware integration
platform for the proposed system architecture. Finally,
results concerning performance are presented for the dy-
namic access control.

This paper is organized as follows: in Section 2, the



International Journal of Network Security, Vol.1, No.2, PP.103–109, Sep. 2005 (http://isrc.nchu.edu.tw/ijns/) 104

philosophy behind key management scheme is described.
In Section 3, the proposed system architecture for the
hardware implementation is presented. In the next Sec-
tion 4, the dynamic access control of the system are pre-
sented and analyzed concerning performance terms. Fi-
nally, conclusions and outlook are given in Section 5.

2 Access Control in Hierarchy:

Key Management Method

The solution of Cungang Yang et. al. [19] for ac-
cess control in hierarchy is based on the one-way hash
functions. According to this work, for a given role of
hierarchy a set of one-way hash functions are chosen:
Hi = {H1, H2, · · · , Hn}. With n is denoted the maximum
number of the hierarchy’s child nodes.

As the one-way hash function well-known hash func-
tions could be selected such as MD5, SHA-1, SHA-2, and
RIPEMD [4, 5, 11, 12, 16].

In such a hierarchy, a node is defined as a dead-end
node if there are no direct parent nodes, while the other
nodes are called non-dead-end nodes. In Figure 1 an ex-
ample of such a hierarchy is illustrated. In the following
example, node A is a dead-end node, while the nodes
B, C, · · · , I are non-dead-end nodes.

Figure 1: Hierarchy nodes

A central authority (CA) is responsible for the key gen-
eration, of nodes hierarchy. Figure 2 presents the derived
keys for each node of the hierarchy. Key(1) is an arbi-
trary key assigned by the CA to the dead-end node A. If
a node rj only has one direct parent node whose key is
Key and if node rj is the ith direct child node of its direct
parent node (from left to right), then the key of role rj

will be Hi{Key}.
In the case that the a node rj has more than one di-

rect parent nodes (r1

j , r2

j , · · ·, rm
j ) and assuming that rj ,

is the jth direct child node of its left most direct par-
ent node r1

j . In addition, if rj is the kth direct child

node of r2

j , rj is the nth direct child node of rm
j , and the

keys of the direct parent nodes of rj (r1

j , r2

j , · · ·, rm
j ) are

Key1, Key2, · · · , Keym, then the key of node rj will be
Hi{Hi(Key1), Hk(Key2), · · · , Hn(Keym)}.

Figure 2: Keys derivation for the hierarchy node

In the above example, three different hash functions
H1, H2, H3 must be selected, since the maximum number
of child nodes for this hierarchy is three.

As it has also be mentioned before for the dead-end
node A the key Key1 is assigned directly form the CA.
Thus, the derived keys of the other nodes are generated
based on Key1 and the three selected hash functions with
the following way:

• For the node that only has one direct parent
node, such as B, they derived key Key11, will be
H1(Key11).

• Nodes with more than one direct parents nodes, (F ),
the key Key23 will be H3(H3(Key11), H1(Key12)).

In order to derive the key of node F from node B or C,
public parameters must be specified. The users of node
C must know the value of H3(Key11), and users of node
B must know the value of H1(Key12). This means in
practical that the nodes that have more than one direct
parent node should have public parameters.

The security of this management method is relied on
the security of the hash functions set. In other words, this
means that the users of a node cannot derive the keys of
each parent nodes.

Furthermore, the user of a node A, which is one of the
direct parent nodes of a node R, may have some public
parameters, but the user cannot obtain the keys of other
direct parent nodes of node B. The only known infor-
mation is the hash values of those keys. In the example
of Figure 2, the user of node B can retrieve the public
parameter H1(Key12) from node C, but it can not derive
the key of node C, Key12, since hash functions values can
not be reversed calculated.



International Journal of Network Security, Vol.1, No.2, PP.103–109, Sep. 2005 (http://isrc.nchu.edu.tw/ijns/) 105

3 Key Management System Im-

plementation

3.1 Proposed System Architecture

As it is has been stated in the previous sections the key
management protocol for the access control in hierarchy,
is fundamentally based on one-way hash functions pro-
cessing. In this section, we propose an efficient architec-
ture and present also the hardware integration, for the
management protocol. In Figure 3, the proposed archi-
tecture is illustrated.

Figure 3: System architecture

We assume that in the studied hierarchy, the maxi-
mum number of direct child nodes for each node is three.
This results to system architecture with three basic hash
functions cores. It has to be mentioned that this is only
an assumption in order to provide implementation com-
parisons results for a specified number of child nodes. If
the cores chain is employed not different hash functions,
there is no restriction for a specified number of cores (child
nodes).

For a child node for which is dedicated the hash func-
tion core Hi, the input key from it’s direct parent(s) is
forced to the hash function core through the Data In i,
with i = 1, 2, 3. After the appropriate number of transfor-
mation rounds, which are defined each time by the used
hash function the hash value is stored to the Reg Out i.
The multiplexer of the final stage Mux 3x1, defines each
time which store hash value would be loaded to the Hash
Value Output.

In the cases that previous hash values parent(s) keys
are needed for the calculation of a child key, these could
be loaded through the Reg Out (1 to 3) or even through
the three data inputs.

It has to be mentioned that for the proposed system
implementation for each node a n-bit register, or memory
cells are needed for key storage reasons. With the variable
n is defined the width of the used hash valued each time.

Typical values of this variable are 160 for SHA-1, 256,
384, and 512 for SHA-2, 128 for MD5 etc.

For the proposed system it is efficient to implement the
same hash function in each one of the three hash function
cores. The other available solution is to select a combina-
tion of hash functions, a different for each core, in order to
advance the system performance in terms of throughput,
frequency, as well as and for the allocated area resources.

In this work different hash functions has been imple-
mented in order to choose the best between the avail-
able efficient solutions each time, concerning throughput
terms. The studied hash functions are, MD5, RIPEMD,
SHA-1, and SHA-2. For the examined implementations
a typical full rolling architecture was used, which is pre-
sented in the next Figure 4.

Figure 4: Hash function core architecture Hi

Figure 5: Implementations comparison graph

During initialization phase, the user with the appro-
priate write commands selects the operation mode. First,



International Journal of Network Security, Vol.1, No.2, PP.103–109, Sep. 2005 (http://isrc.nchu.edu.tw/ijns/) 106

Figure 6: a) Adding a dead-end (R) and a non-dead-end (J), b) Deleting a non-dead-end (C)

the Padder pads the input message and after that the
hash computation begins. The Control Unit coordinates
all the system operations and processes. After the ini-
tialization phase, the control unit is totally responsible
for the system operation. It defines the proper constants
and operation word length, it manages the ROM blocks
and it controls all the proper algebraic and digital logic
functions for the hash function operation.

The Hash Computation Unit is the main datapath
component of the system architecture. The specified num-
ber of the data transformation rounds, for each one of the
hash functions, is performed in this component with the
support of a rolling loop (feedback). In every data trans-
formation round, based on the padded data, in the Wt

Unit a new data block, Wt(i), is produced. In the ROM
Blocks the specified constants set, Kt(i), of the hash func-
tion are stored, in order to support the Hash Computation
Unit process.

The Transformed Data are finally modified in the Last
Transformation, which operates in cooperation with the
Constants Unit. In this way, the message digest is pro-
duced and is stored into the Message Digest Register. A
Bus Interface Unit has also been integrated, in order for
the proposed system to communicate efficiently with the
external environment.

3.2 Implementation Synthesis Results

The proposed system architecture (Figures 3-4) was cap-
tured by using VHDL, with structural description logic.
The code was synthesized, placed, and routed using an
FPGA device of XILINX (Virtex) [9]. The system then
was simulated again, and verified considering real time op-
erating conditions. The tools that were used for the above
procedures are: ModelSim SE/EE Plus 5.4e for simula-
tion, Leonardo Spectrum 2003 for synthesis and XILINX
Foundation 3.1i for placing and routing. The synthesis
results of the proposed system are shown in Table 1.

Based on the above synthesis results the comparison
graph of the studied hash functions MD5, SHA-1, SHA-
2, and RIPEMD is illustrated in Figure 5.

Based on the above implementation synthesis results
it is proven that SHA-1 is a flexible and efficient solu-
tion for the key agreement protocol implementation. This
hash function needs less area resources. The operation
frequency reaches quite high value, while using the Area-
Delay model SHA-1 is one of the best implementations,
compared with the others.

4 Dynamic Access Control

The proposed system operates efficiently to dynamic ac-
cess control procedures, which deals with changes in the
relationships between the nodes of the hierarchy. These
procedures include adding, deleting and changing a node.

4.1 Adding Nodes

Adding a mode R is a simple procedure in the case of
dead-end node. In this case, CA will assign a new key
to R. The keys for the direct and indirect child nodes of
node R must be regenerated (Figure 6a). In the case that
the added node J is non-dead-end, its key will be derived
from the direct parents’ nodes. In addition to this, the
keys for both direct and indirect child nodes of J have
also to be regenerated (Figure 6a).

4.2 Deleting a Node

In the cases that a dead-end node R has to be deleted and
a new dead-end node exist, the CA keeps the original key
values of the last one. If the deleted node is not a dead-
end node (as an example we use the node C of Figure 6b),
the key values of the child nodes have to be regenerated
(nodes F , G, & H) in our example.



International Journal of Network Security, Vol.1, No.2, PP.103–109, Sep. 2005 (http://isrc.nchu.edu.tw/ijns/) 107

Table 1: Implementations synthesis results

HASH FUNCTIONS Area (CLBs) Frequency (MHz) Throughput (Mbps)

MD5 728 80 157
RIPEMD 1251 75 148
SHA-1 892 82 161

SHA-2 (256) 2123 83 326
SHA-2 (384) 3934 74 350
SHA-2 (512) 4075 75 480

4.3 Changing Nodes Relationship

Another basic process is related to the relationship change
between the nodes. For a node R which is the direct par-
ent of another node of the system, named S, if node S

becomes a dead-end node after deleting the relationship
between R and S the CA will change the key of S. In dif-
ferent case, the keys of both S and its direct and indirect
child nodes will be regenerated.

Figure 5 presents such a scenario of changing nodes re-
lationships. If the relationship between A and B stops to
exist, they key of B will not be regenerated. If the rela-
tionship between C and F is deleted, the key of node F

will be generated again. In addition, if a new relationship
between two nodes is created, for instance between S and
R, and S become a direct parent of the node R, both the
keys of R and the child nodes have to be regenerated. In
other words, a new relationship between B and H as it is
shown in Figure 6, with B to become the parent of node
H , results to the regeneration of node H .

Figure 7: Changing nodes relationship example

By adding deleting or changing the relationships be-
tween the nodes of the network hierarchy it is resulted
to additional hash function processing. This costs to an
additional number of clock cycles, which are depended on
the selected hash function each time. The additional cost
for each one of the studied hash functions in the term of
clock cycles per hash calculation, are given in Figure 8.

The above graph shows that SHA-2(256) and MD5

could be selected as the hash functions with less perfor-
mance cost, measured as clock cycles per hash compu-
tation, in the case of changing nodes relationships. Al-
though, the area cost of such an implementation is quite
high for SHA-2, compared with the others (Figure 5).
Based on both comparisons results of both Table 1 and
Figure 8, one flexible solution is the selection of both
SHA-2(256) and MD5 for the cores of the proposed system
of Figure 3. Both of them ensures lowest additional per-
formance cost, in the case of dynamic access control. The
selection of SHA-1 for the hash functions cores supports
a good balance concerning the area resources against the
SHA-2(256) or MD5. At the same time, SHA-1 is a worth-
while implementation for the initial key generation of the
hierarchy nodes.

5 Conclusions and Outlook

In this work, the implementation of a key management
method is examined. This protocol is used basically for
the access control in a network hierarchy. It is based on
the usage of hash functions, which guarantees the secu-
rity level of the system. This paper studies the alternative
implementations of different hash for this key agreement
protocol. More analytically, by using a full rolling ar-
chitecture as an integration platform the implementation
of the following hash functions are examined concerning
both performance and area implementation cost terms:
MD5, RIPEMD, SHA-1, and SHA-2. Finally, the dy-
namic access control of the system is presented. The
performance additional cost is given for the operations
of adding, deleting and changing the relationships of a
node(s).

References

[1] S. G. Akl and P. D. Taylor, “Cryptographic solution
to a multilevel security problem,” Chaum D, Rivest
RL, Sherman AT, editors, in em Advances in Cryp-
tology, 1982.

[2] S. G. Akl and P. D. Taylor, “Cryptographic solution
to a problem of access control in a hierarchy,” ACM
Transaction on Computer Systems, vol. 1, no. 3,
pp. 239–248, July 1983.



International Journal of Network Security, Vol.1, No.2, PP.103–109, Sep. 2005 (http://isrc.nchu.edu.tw/ijns/) 108

Figure 8: Additional cost, clock cycles per hash computation

[3] S. Bakhtiari, R. Safavi-Naini, J. Pieprzyk, Crypto-
graphic Hash Functions: A Survey, Technical Report
95-09, Department of Computer Science, University
of Wollongong, July 1995.

[4] S. Bakhtiari, R.Safavi-Naini, J. Pieprzyk, Crypto-
graphic Hash Functions: A Survey, Technical Report
95-09, Department of Computer Science, University
of Wollongong, July 1995.

[5] H. Dobbertin, A. Bosselaers, and B. Preenel,
“RIPEMD-160, a strengthened version of RIPEMD,”
in em Fast Software Encryption, LNCS 1039,
Springer-Verlag, pp. 71–82, 1996.

[6] H. (Nokia) Frederick, J. Mike, XML Key Manage-
ment (XKMS 2.0) Requirements, W3C Note 05-May-
2003.

[7] T. Hardjono, B. Cain B, I. Monga, Intra-domain
Group Key Management Protocol, Internet-Draft,
draft-ietf-ipsec-intragjm-00.txt, Nov. 1998.

[8] J. H. Huang, M. S. Mishra, “A highly scalable key
distribution protocol for large group multicast,” in
proceedings of IEEE Global Communications Confer-
ence (GLOBECOM 2003), pp. 232–235, 2003.

[9] S. Jose, Virtex, 2.5 V Field Programmable Gate Ar-
rays, Xilinx, California, USA, www.xilinx.com, 2005.

[10] V. Manish, “XML security: the XML key man-
agement specification,” XKMS helps make security
manageable: IBM developer Works, Jan. 27, 2004.

[11] SHA-1 Standard, National Institute of Standards
and Technology (NIST), Secure Hash Standard, FIPS
PUB 180-1, www.itl.nist.gov/fipspubs/fip180-1.htm,
2005.

[12] SHA-2 Standard, National Institute of Standards
and Technology (NIST), Secure Hash Standard, FIPS
PUB 180-2, www.itl.nist.gov/fipspubs/fip180-2.htm,
2005.

[13] B. Schneier, Applied Cryptography-Protocols, Algo-
rithms and Source Code in C, Second Edition, John
Wiley and Sons, New York, 1996.

[14] N. Sklavos, P. Kitsos, K. Papadomanolakis and O.
Koufopavlou, “Random number generator architec-
ture and VLSI implementation,” in proceedings of
IEEE International Symposium on Circuits & Sys-
tems (ISCAS’02), pp. 854–857, USA, 2002.

[15] N. Sklavos and O. Koufopavlou, “Mobile communi-
cations world: security implementations aspects - A
state of the art,” CSJM Journal: Institute of Math-
ematics and Computer Science, vol. 11, no. 2 (32),
pp. 168–187, 2003.

[16] D. R. Stinson, Cryptography: Theory and Practice,
CRC Press LLC, 1995.

[17] C. K. Wong, M. Gouda, S. S. Lam, “Secure group
communications using key graphs,” in proceedings of
ACM SIGCOMM’98, pp. 69–72, 1998.

[18] T. C. Wu, T. S. Wu, W. H. He, “Dynamic access
control scheme based on the Chinese remainder the-
orem,” Computer Systems: Science and Engineering,
vol. 2, pp. 92–99, 1995.

[19] C. Yang and C. Li, “Access control in a hierarchy us-
ing one-way hash functions,” Computers & Security,
vol. 23, no. 8, pp. 659–664, 2004.



International Journal of Network Security, Vol.1, No.2, PP.103–109, Sep. 2005 (http://isrc.nchu.edu.tw/ijns/) 109

Nicolas Sklavos received the Ph.D.
Degree in Electrical & Computer En-
gineering, and the Diploma in Elec-
trical & Computer Engineering, in
2004 and in 2000 respectively, both
from the Electrical & Computer En-
gineering Dept., University of Patras,
Greece. His research interests include

Cryptography, Wireless Communications Security, Com-
puter Networks and VLSI Design. He holds an award for
his PhD thesis on “VLSI Designs of Wireless Communi-
cations Security Systems”, from IFIP VLSI SOC 2003.
He has participated to international journals and confer-
ences organization, as Program Committee Member and
Guest Editor. Dr. N. Sklavos is a member of the IEEE,
the Technical Chamber of Greece, and the Greek Electri-
cal Engineering Society. He has authored or co-authored
more than 80 scientific articles, books chapters, tutorials
and reports, in the areas of his research. Contact him at:
nsklavos@ieee.gr.

Odysseas Koufopavlou received the
Diploma of Electrical Engineering in
1983 and the Ph.D. degree in Elec-
trical Engineering in 1990, both from
University of Patras, Greece. From
1990 to 1994 he was at the IBM
Thomas J. Watson Research Center,
Yorktown Heights, NY, USA. He is

currently an Associate Professor with the Department of
Electrical and Computer Engineering, University of Pa-
tras. His research interests include VLSI, low power de-
sign, VLSI crypto systems, and high performance com-
munication subsystems architecture and implementation.
Dr. Koufopavlou has published more than 100 technical
papers and received patents and inventions in these areas.


