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Abstract

The “PYRAMIDS” Block Cipher is a symmetric encryp-
tion algorithm of a 64, 128, 256-bit plaintext block, that
accepts a variable key length of 128, 192, 256 bits. The
algorithm is an iterated cipher consisting of repeated ap-
plications of simple round transformations with different
operations and different sequences in each round.
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1 Introduction

In the last few years the merging of computer and commu-
nications technologies has been developing progressively.
The need of security to protect the data through networks
has become of vital importance. This area of research has
become quite active in the recent years. Encryption algo-
rithms have received wide attention and study. A lot of
algorithms were published in this area such as RC6 [15],
Rijndael (AES) [8], Serpent [3], Two-fish [17], Mars [6],
Khazad [1]. These algorithms vary in security levels, de-
sign, structure, and throughput. All of these algorithms
are using a fixed round function in the encryption and
decryption processes. Explicitly, if the algorithm is to be
attacked then the same scenario is applied irrespective of
the user’s key. However, if the round function is changed
with every different user’s key then the attacker needs to
analyze the algorithm for every user’s key. In this work,
we make full use of this simple fact to design an algorithm
that is of high security and at the same time adaptable
to hardware implementations. This work starts with the
design rationale, and then move to the description of the
algorithm itself. We then move to discuss the algorithm
specifications and its key scheduling process.

2 Design Rationale

The cipher is a 64, 128, 256-bit length, which also accepts
a variable key length 128, 192, 256 bits. The PYRAMIDS
is an iterated cipher consisting of a repeated application of
a simple round transformation with different operations,
and different sequence in each round. Moreover, we take
into account, in the design criteria, robustness against the
cryptanalysis, speed, simplicity, and suitability for hard-
ware applications.

3 The Round Transformation

The round transformation is composed of different
transformations. These transformations are addition +,
xor (⊕), right rotation (>>>), and ordered operation
(⊗). By considering the block of the text W is consisting
of 4 words w0, w1, w2, w3, the sub-keys are k0

i , k1
i , k2

i , k3
i ,

and Rot is the rotation. The pseudo code of the i-th
round is shown next.

Round(W, k)
{

w1 = w1 + k1
i ;

w2 = w2 + k2
i ;

w0 = w0 ⊕ ((w2 ⊗
1
i k0

i ) >>> Rot1i );
// f1

i

w3 = w3 ⊕ ((w1 ⊗
1
i k3

i ) >>> Rot2i );
// f2

i

w1 = w1 ⊕ w0;
w2 = w2 ⊕ w3;
w0 = w0 >>> Rot2i ;
w3 = w3 >>> Rot1i ;
(w0, w1, w2, w3) = (w2, w0, w3, w1);

}

The pseudo code of decryption round is given by:

InvRound(W, k)
{
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(w0, w1, w2, w3) = (w1, w3, w0, w2);
w0 = w0 >>> (L − Rot2i );

// L is the word Length
w3 = w3 >>> (L − Rot1i );
w1 = w1 ⊕ w0;
w2 = w2 ⊕ w3;
w0 = w0 ⊕ ((w2 ⊗

1
i k0

i ) >>> Rot1i );
// inverse of f1

i

w3 = w3 ⊕ ((w1 ⊗
1
i k3

i ) >>> Rot2i );
// inverse of f2

i

w1 = w1 − k1
i ;

w2 = w2 − k2
i ;

}

The computational flow graph of the algorithm is
shown in Figure 1. The algorithm utilizes the same
operations for encryption and decryption procedures.
During the execution cycle, each round function is exe-
cuted using a different order of operations. Accordingly,
this variable-round-calling will appreciably add to the
algorithm security level.

The number of rounds is determined by the data size of
the cipher since the key is expanded using different prim-
itive equations depending on the size of the block. When
the user key is less than 256-bit long, then it is expanded
to 256-bit long, so number of rounds is depending on the
data size and not the key size.

4 The Algorithm Specifications

The PYRAMIDS provides a little variation between
encryption and decryption procedures. The pseudo code
for the encryption procedure is given by:

Encryption(Plaintext, Ciphertext, k,⊗, Rot)
{

for i = 0 to R − 1
Round(Plaintext, Ciphertext, k,⊗, Rot);

for i = 0 to 4
Ciphertext[j] = Ciphertext[j] ⊕ kj

4R+1

}

The pseudo code for the decryption procedure is given by:

Decryption(Plaintext, Ciphertext, k,⊗, Rot)
{

for i = 0 to 4
Ciphertext[j] = Ciphertext[j] ⊕ kj

4R+1

for i = R − 1 down to 0
InvRound(Ciphertext, P laintext, k,⊗, Rot);

}

5 The Key Scheduling Process

The PYRAMIDS cipher uses 4 ∗ (R + 1) sub-keys. These
sub-keys are derived from the user’s input key using the

key scheduling algorithm. This scheduling algorithm is
explained as follows:

• The basic operations used in the key scheduling al-
gorithm are:
x << y: shift the bits of x to left by the amount y.
x >> y: shift the bits of x to right by the amount y.
mod (%), bitwise AND (&).

The procedure employed to derive the sub-keys is as
follows:

• The constants are constructed in the following way:
if(not odd(Ci = (Ci−1 << 2) + (Ci−1 >> 1)))

Ci + +;

Where i = 1, 2, 3, · · ·; and C0 for 16, 32, 64-bit
word are chosen randomly. In our implementation we
choose C0 randomly from 10000 digits of the fraction
of the Golden Ratio. These starting constants are
0x1D5B, 0x5571D066, and 0xEB6F1276660AA498, for
16-bit word, 32-bit word, and 64-bit word respectively.
These constants are required to avoid weak keys such as
in the case of IDEA [12]. The key scheduling algorithm
has three phases for every word length. Figure 2 depicts
schematically these phases.

These three phases are explained as follows:

Phase 1: In this phase, the input user’s key is ex-
panded and modified as follows:
Considering the number of words as q, then when the
algorithm is executed in 16-bit word length mode, the
256-bit key length can be represented with q = 16 words
and the expanding procedure is:

for i = 0 to q − 1
ExpandedKey[i] = (UserKey[i%s]

<<< (UserKey[i%s]⊕ C[i]) ⊕ C[q − 1 − i];

Where s is the length of input user’s key.
Phase 2: In this phase, the pre-keys are constructed by
passing the input user’s key and constants through the
round of the cipher.

Round(Subkey[0..3], Expandedkey[0..3], C[0..3],⊗, Rot);
Round(Subkey[4..7], Expandedkey[4..7], C[4..7],⊗, Rot);

Phase 3: In this phase, the sub-keys obtained from
the previous phase are used to order the rotations’ and
operations’ arrays. They are also used to construct
the final sub-keys which are utilized through the en-
cryption and the decryption procedures. The pseudo
code of ordering the rotations and operations is as follows:

for i = 0 to t
{

IndexRotation[i] = subkey[i%q]%(t− 1);
IndexOperation[i] = subkey[(t− i)%q]%(t − i);

}
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Figure 1: The computational graph of PYRAMIDS’ round
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Figure 2: Computational graph of the key scheduling algorithm

for i = 0 to t
{

Swap(Rotation[i], Rotation[IndexRotation[i]]);
Swap(Operation[i], Operation[IndexOperation[i]]);

}

The variable t represents the number of operations
in each table for different word length. The tables of
initial rotations and operations are shown in Appendix
A. The final sub-keys are calculated as follows:

for i = 16 to 4 ∗ R + 1
subkey[i] = ((((((subkey[i − 16] ⊕ subkey[i− 15])

+ subkey[i− 10]) & subkey[i− 9])
+ subkey[i− 2]) ⊕ subkey[i− 1])
>>> subkey[i − 3]) ⊕ C[i]

The key scheduling algorithm in the final sub-keys
generations achieves fast avalanche. This is accurate
since the final sub-keys generations are based on the
primitive polynomial given by:

Q(x) = x16 + x15 + x14 + x7 + x6 + x + 1 in GF (2).

These sub-keys are computed for 16-bit words. The
final sub-keys for other word lengths are calculated as
follows:

for i = 8 to 4 ∗ R + 1
subkey[i] = ((((((subkey[i − 8] ⊕ subkey[i− 7])

+ subkey[i− 5]) & subkey[i− 4])
+ subkey[i− 3]) ⊕ subkey[i − 1])
>>> subkey[i− 2]) ⊕ C[i]

The final sub-keys generations achieve fast avalanche
because it is based on the primitive polynomial:

Z(x) = x8 + x7 + x5 + x4 + x3 + x + 1 in GF (2).

The arrays of the operations, rotations, and sub-keys
are then sent to the encryption/decryption procedure.

6 Hardware Implementation Suit-

ability

An implementation in the software of the proposed algo-
rithm PYRAMIDS is one of the choices available to the
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user. However, in this algorithm, the primitive operations
are integer addition, integer subtraction, xor (⊕), circular
left (<<<), circular right (>>>).

These operations are very well-supported on modern
microprocessors. They can be executed extremely fast,
and all of them, naturally, are much faster than the mul-
tiplication operations used in some algorithms. We be-
lieve, based on our experimentation that is to be pub-
lished in another work, that this algorithm is suitable for
hardware-implementation with high levels of throughput
and reasonably consumed implementation area. More-
over, this algorithm does not use look-up tables during en-
cryption/decryption, nor does it use s-boxes. It just uses
a sequence of low level operations and rotations. These
features suggest that the algorithm architecture is rela-
tively easy to fit onto the hardware chip. However, the
use of the key schedule makes the algorithm need some ad-
ditional memory to store the sub-keys to be used through
the encryption/decryption processes.

7 The Correlation Assessment

The correlation assessment technique is used to check
whether there is a relation between the input and the
output of the algorithm. We provide a test of our al-
gorithm for a 32-bit word. By constructing n plaintexts
represented in decimal format. The i-th plaintext is con-
sidered as

Pi(x
i
0, x

i
1, x

i
2, x

i
3).

The corresponding n cipher-texts are also presented in
decimal format. The corresponding i-th cipher-text to the
i-th plaintext is

Ci(y
i
0, y

i
1, y

i
2, y

i
3).

These n cipher-texts are encrypted under a fixed key
that is chosen randomly. We calculate the correlation in
the way that the word xi

j in the i-th plaintext is corre-

sponding to the word yi
j in the i-th cipher-text, where

j = 0, 1, 2, 3, and i = 1, 2, · · · , n.
The correlation formula is given by:

Correl(P, C)

=

∑n
i=1

∑3

j=0
(xi

j − x̄)(yi
j − ȳ)

√

∑n
i=1

∑3

j=0
(xi

j − x̄)2
∑n

i=1

∑3

j=0
(yi

j − ȳ)2
(1)

The results are shown in Appendix B. These results
do not show any regularity or periodical behavior of the
outputs.

8 Potential Attacks on the Algo-

rithm

In this section we discuss potential attacks on the algo-
rithm and show its robustness against various types of

attacks. We divide these attacks into two different types;
those which do not depend on the cipher design and those
which depend on cipher design. These are discussed in the
following subsections.

8.1 Attacks not cipher design-dependent

These attacks are summarized as follows:

8.1.1 Dictionary Attack

The dictionary attack depends on the block size, and for
the n-bit block size, the attacker needs 2n different plain-
texts to be able to encrypt arbitrary messages under an
unknown key. For our proposed algorithm with a 64-bit
block size, 264 different plaintext blocks are required. For
a 128-bit block size, 2128 different plaintext blocks are
required. While for a 256-bit block size, 2256 different
plaintexts blocks are required.

8.1.2 Modes of Operations

This attack is applicable to any deterministic block ci-
pher. It depends on 2n/2 encrypted plaintext blocks in
CBC or CFB mode for n-bit block size. The attacker
can expect to find two equal cipher-text blocks, which en-
able the attacker to compute the xor of the corresponding
plaintext [10].

For PYRAMIDS with a 64-bit block, the complexity is
232, with a 128-bit block the complexity is 264, and with
a 256-bit block the complexity is 2128.

8.1.3 Key-Collision Attacks

This attack can be used to forge a message with complex-
ity depending only on the key size k, this complexity is
2k/2 [2].

For PYRAMIDS, the complexity of a 128-bit key
length is 264. The complexity of a 196-bit length is 298,
and the complexity of a 256-bit key length is 2128.

8.2 Attacks that Depend on the Design

of the Cipher

These attacks are summarized as follows:

8.2.1 Differential and Linear Cryptanalysis

Let us assume that we have a set of r pairs of plain-
texts/ciphertexts, and then the attacker will try to
find differential or linear property between the plain-
text/ciphertext with a high probability to exploit it in
extracting some bits of the user key. In the proposed algo-
rithm, the attacker will not be able to know the sequences
of the operations and the rotations used in the algorithm
since the order of the sequences and operations depends
on the user key. To find the differential and linear prop-
erty of the plaintext/ciphertext pairs, the attacker has to



International Journal of Network Security, Vol.1, No.1, PP.52–60, July 2005 (http://isrc.nchu.edu.tw/ijns/) 56

find all the properties for every sequence of operations
and rotations with a high probability.

In the case of 64-bit algorithm, we have 6 different op-
erations, and 16 different rotations. The permutation of
the operations is 6!. The permutation of the rotation is
16!. This provides us with 6! ∗ 16! ≈ 254 different se-
quences. That means that the attacker has to do 254

different studies. For every study, the attacker has to
find the linear or differential properties, and then uses the
available pairs of plaintexts/ciphertexts to extract some
bits from the key. Subsequently, the attacker has to per-
form exhaustive search to find the remaining bits of the
key. However, this attack will consume time and effort
more than the exhaustive key search itself.

Moreover, if the attacker has r pairs of plain-
texts/ciphertexts, then he/she has to use all the pairs
to extract l bits from the key. Then he/she has to apply
plaintexts/ciphertexts r(254) times depending on the dif-
ferent sequences. These operations have to be less than
the exhaustive key search to be considered better than
the exhaustive search attack.

For a 128-bit key length, the operations are of the or-
der of 2128. By considering that the attacker has extracted
l bits then the operations are r(254), and the exhaustive
search for the rest of the remaining bits are 2128−l. There-
fore, the attack will be better than exhaustive key search
if 2128 > 2128−l(r)254. That is, 2l > r(254). However this
is quite difficult to achieve. For example, if the attacker
has r = 50 plaintexts, then the attacker has to extract
more than 60 bits from the input user’s key to be able to
achieve the attack faster than the exhaustive key search,
i.e. l > 60 bits. With this number of plaintexts, it is diffi-
cult to extract these bits from the input user’s key faster
than the exhaustive key search. The same study can be
performed for other key lengths.

8.2.2 Higher Order Differential

This attack exploits the d-th order of the differential of a
function of nonlinear order d which is constant [11]. This
attack can be applied just for ciphers with few rounds and
fixed round function. Then this attack is not applicable
in our proposed algorithm by reason of the nature of the
round function. Additionally, this attack is applicable for
ciphers with a few rounds, which is different from our
case.

8.2.3 Slide Attacks

The slide attack and the advanced slide attack are not
applicable to this cipher. This is correct since the round
function is not weak [4, 5]. Also, the round function is
changed every round where it does not satisfy f [r] = f [r+
1].

8.2.4 Boomerang Attack

This attack depends on differential properties [18]. For
PYRAMIDS, as we have shown in Section 8.2.1, it is

very difficult to successfully achieve this type of attack.
In other words, PYRAMIDS will be immune against the
boomerang attack.

8.2.5 Algebraic Attack

In this attack, the attacker tries to construct algebraic
equations of the cipher and the key, and hopes to solve
these equations. Moreover this type of attack is applicable
for cipher with s-boxes [7]. However, in our cipher this
type of attack is not applicable. This is due to the non
sequence of applying the round function. Additionally
there are no s-boxes.

8.2.6 Interpolation Attack

The interpolation attack depends on the components of
the cipher with simple algebraic structures to construct a
mathematical expression with low complexity [9]. In this
attack, the attacker constructs a polynomial using pairs
of plaintext/ciphertext. If the degree of the constructed
polynomial is small, only a few pairs of plaintext/ cipher-
text are needed to solve the polynomial coefficients. This
attack is applicable on ciphers with a few rounds, while
it is infeasible for more than a few rounds. Moreover, the
polynomial will have a different form for every different
key due to the sequence of the operations in the cipher.

8.2.7 Square Attack

Applying Square attack[b] on PYRAMIDS cipher is very
difficult. This is due to the change in the round function
each round, hence tracing the active words is different
for each key. For each key, the operations on the active
words will be different in sequence, so the attacker has to
guess the sequences of these operations used in the round
function, and then the attacker will try to find the key
by discarding wrong keys depending on active words and
passive words. This work will be done for all sequence
and this same to be infeasible.

9 Statistical Analysis

The PYRAMIDS block cipher is tested using sixteen sta-
tistical tests (Frequency. Frequency within a bloc, Runs,
Longest run of ones in a block, Binary matrix rank, Dis-
crete Fourier transform, non-overlapping template, over-
lapping template, Universal statistical, Lempel-Ziv com-
pression, linear complexity, serial, approximate entropy
cumulative sums, random excursions, random excursions
variant) [13, 16]. The results do not indicate any devia-
tion from random behavior. These tests are essential but
not sufficient for security. A final word on this algorithm
can be summarized as follows: The 3DES was developed
to increase the security by using 2 keys, or 3 keys and
these keys were used in this sequence Ek1

(Dk2
(Ek3

(x)))
or Ek1

(Dk2
(Ek1

(x))) because the key length of DES is 56-
bits (fixed length). However, this is not our case, we have
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variable key length, variable block length, so 3PYRA-
MIDS is not needed. For more security we can advise
to increase number of rounds. We have chosen the algo-
rithm to be called ”Pyramids” since, similar to the Giza
Pyramids; it may not reveal all of its secrets.

10 Software Implementation

The performance of the proposed algorithm is tested on
Intel’s Pentium Pro microprocessor 800 MHz, 256 KB
cash memory, 192 MB memory, and Windows XP operat-
ing system with service pack2. The source code was writ-
ten in Borland C Builder 6.0. The results demonstrate
that the timing estimate showed that PYRAMIDS has
a performance better than MESH-64, MESH-96, MESH-
128 [13, 14], Rijndael (AES) [8], except for Rijndael with
128-bit block length and 128-bit key length. The perfor-
mance comparison is shown Appendix C.

11 Application on Images

To verify that the resulting cipher emulates almost com-
munication white noise, we have applied it on a series of
images. These images are shown in Appendix D. Inves-
tigating the set of encrypted images and comparing it to
RC6 encrypted images, one concludes that the algorithm
output emulates random noise. It is clear that there are
no biases to any part of the original images contrary to
images that are RC6-encrypted.

12 Summary and Conclusion

We have presented in this paper a block cipher with vari-
able block length 64, 128, 256 bits, variable key length
128, 192, 256 bits. The special features of the proposed
cipher are summarized as follows:

• The algorithm is an iterated cipher consisting of a
simple round transformation with different opera-
tions and different sequences in each round.

• The sequence of the operations depends on the input
user’s key. In this respect, we can reason that the
algorithm provides a dynamically-changed procedure
for every different user’s key.

• Encryption and decryption use the same operations.
This constructs an efficient code. Moreover, the key
scheduling algorithm uses the same round function
of PYRAMIDS which gives rise to a more compact
code.

• As depicted from Figure C.1, the throughput of the
proposed algorithm is comparable to others ciphers.
It is even faster than AES for most cases.

• The algorithm is secure since it shows robustness
against various types of attacks as was discussed be-
fore. We have chosen the algorithm to be called

”Pyramids” since, similar to the Giza Pyramids; it
may not reveal all of its secrets.

• As shown in Table C.1 and Figure C.1, the algo-
rithm provides a performance that surpasses the per-
formance of MESH.

• Encrypting images shows that the algorithm emu-
lates almost complete random noise with better re-
sults as compared to RC6.

• The structure of the algorithm and its low level oper-
ations provide a good basis for its potential in hard-
ware implementations.

Based on the discussed comparison, one can conclude
that the security and the performance of the proposed
algorithm are satisfactory for multi-level security applica-
tions of today’s networks.
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Appendix A

The following tables (Tables A.1 and A.2) demonstrate
the order of operations and rotations. The order of these
operations and rotations is changed depending on the in-
put user’s key in the key scheduling algorithm. Number
of operations and rotations is increased for words of 32,
64-bit long.

Appendix B

The algorithm is a word oriented algorithm. In this test,
we chose xi

0 randomly, while xi
1, x

i
2, x

i
3 are fixed through

the test. We choose xi
1 = 0, xi

2 = 0, xi
3 = 0. We sort

Table A.1: The rotations in stage -1 of 64-bit block (word
length is 16-bit)

Rotation in Round i Rotation Value

0 − Rot1 1
0 − Rot2 2
1 − Rot1 3
1 − Rot2 4
2 − Rot1 5
2 − Rot2 6
3 − Rot1 7
3 − Rot2 8
4 − Rot1 9
4 − Rot2 10
5 − Rot1 11
5 − Rot2 12
6 − Rot1 13
6 − Rot2 14
7 − Rot1 15
7 − Rot2 8

the n plaintexts in ascending order. The calculated cor-
relation for n = 65535 using Equation (1) is given by
Correl(P, C) = −0.0014. When the correlation is close
to ±1 then the correlation is very high, and vice versa.
We notice that the correlation is very close to zero. That
means there is no correlation between the input and the
output of the algorithm. Moreover, the graphs of the
input plaintext and the output cipher do not show any
regularity or periodical behavior of the output. This is
clearly shown in Figure B.1. The plaintext is considered
xi

0 because all other words are zeros while we have four-
word output, yi

0, yi
1, yi

2, yi
3.

Appendix C

The following table (Table C.1) and the accompanying
chart (Figure C.1) provide a comparison of various block
ciphers throughputs.

Appendix D

To verify that the resulting cipher emulates almost color
noise we have applied PYRAMIDS and RC6 on images.
These results are shown in Figures D.1 and D.2.

It is clear that RC6 shows some regular patterns while
PYRAMIDS’ output emulates almost random noise.
This is mainly due to the scheduling algorithm and the
key-dependent round ordering idea.

Explanation to the Ordered Operations:

By considering that the cipher has two rounds with
initial sequence of operations ⊗1

0 = AND, ⊗2
0 = OR,

⊗1
1 = AND ∼, ⊗1

1 =∼ OR, then for a k1 we presume that
the operations sequence obtained from key scheduling is
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Table A.2: The operations in stage -1 of 64-bit block
(word length is 16-bit)

Operation in Round i Operation

0 −⊗1 X AND Y
0 −⊗2 X OR Y
1 −⊗1 X AND ∼Y
1 −⊗2 X OR ∼Y
2 −⊗1 ∼X AND Y
2 −⊗2 ∼X OR Y
3 −⊗1 X AND Y
3 −⊗2 X OR Y
4 −⊗1 X AND ∼Y
4 −⊗2 X OR ∼Y
5 −⊗1 ∼X AND Y
5 −⊗2 ∼X OR Y
6 −⊗1 X AND Y
6 −⊗2 X OR Y
7 −⊗1 X OR ∼Y
7 −⊗2 ∼X AND Y

as follows:

⊗1
0 = AND

⊗2
0 = ∼ OR

⊗1
1 = OR

⊗2
1 = AND ∼ .

In general we can write the first and third words as
wi

0 = f1
i (wi−1

0 , wi
2, k

0,⊗1
i ), wi

3 = f2
i (wi

1, w
i−1

3 , k3,⊗2
i ) re-

spectively, where i is the round number, and k0, k3 are
the sub-keys of the words w0, w3. Then the round func-
tions will have the following form:
In the first round f1

1 , f2
1 will be:

w0 = w0 ⊕ ((w2 ⊗
1
1 k0

1) >>> Rot11) = f1
1

w0 = w0 ⊕ ((w2 AND k0
1) >>> Rot11)

w3 = w3 ⊕ ((w1 ⊗
2
1 k3

1) >>> Rot21) = f2
1

w3 = w3 ⊕ ((∼ w1 OR k3
1) >>> Rot21).

In the second round f1
2 , f2

2 will be as follows:

w0 = w0 ⊕ ((w2 ⊗
1
2 k0

2) >>> Rot12) = f1
2

w0 = w0 ⊕ ((w2 OR k0
2) >>> Rot12)

w3 = w3 ⊕ ((w1 ⊗
2
2 k3

2) >>> Rot22) = f2
2

w3 = w3 ⊕ ((w1 AND ∼ k3
2) >>> Rot22).

For another key k2 the sequence of the operations may
have this sequence ⊗1

0 =∼ OR, ⊗2
0 = AND ∼, ⊗1

1 =
AND, ⊗2

1 = OR. Then the round functions will have the
following: In the first round f1

1 , f2
1 will be as follows:

w0 = w0 ⊕ ((w2 ⊗
1
1 k0

1) >>> Rot11) = f1
1

w0 = w0 ⊕ ((∼ w2 OR k0
1) >>> Rot11)

w3 = w3 ⊕ ((w1 ⊗
2
1 k3

1) >>> Rot21) = f2
1

w3 = w3 ⊕ ((w1 AND k3
1) >>> Rot21).

(a) The first word from the output of the input plain-
texts

(b) The second word from the output of the input
plaintexts

(c) The third word from the output of the input plain-
texts

(d) The fourth word from the output of the input
plaintexts

Figure B.1: The output of the input plaintexts

In the second round f1
2 , f2

2 will be as follows:

w0 = w0 ⊕ ((w2 ⊗
1
2 k0

2) >>> Rot12) = f1
2

w0 = w0 ⊕ ((w2 AND k0
2) >>> Rot12)

w3 = w3 ⊕ ((w1 ⊗
2
2 k3

2) >>> Rot22) = f2
2

w3 = w3 ⊕ ((w1 OR ∼ k3
2) >>> Rot22).

All rotations are right rotations (>>>), as previously
shown in the algorithm.
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Table C.1: The performance of different algorithms

Algorithm Name Mbps Cycles/byte Cycles/Block

MESH 128 8.7 506.7 8107
MESH 96 11.5 383.9 4606
MESH 64 15.1 291 2331

PYRAMIDS 64 15.6 281.9 2255
Rijndael 192-256 26.8 163.9 3934
Rijndael 256-256 27.2 161.8 5177
Rijndael 256-196 27.3 161.1 5156
Rijndael 256-128 27.6 159.3 5097
Rijndael 128-256 28.5 154.6 2474
Rijndael 192-196 28.8 153 3672
Rijndael 192-128 30.1 146.1 3507
Rijndael 128-196 32.6 134 2158
PYRAMIDS 256 33.4 131.6 4212
PYRAMIDS 128 36.8 119.4 1911
Rijndael 128-128 37.9 116.2 1859

RC6 128 75.9 57.9 927

Figure C.1: The graph of the speed of different
algorithms

Hussein Ahmad AlHassan received
the B.Sc., Department of Informatics,
Faculty of Science from the Aleppo
University, Egypt, in 1995; the M.Sc.
in Department of Mathematics, Fac-
ulty of Science from Cairo University,
Egypt, in 2001. He is currently pursu-
ing his Ph.D. in Department of Math-

ematics, Faculty of Science from Cairo University. He
was the Diploma in Applied Mathematics, Faculty of Sci-
ence, Aleppo University, during 1995-1996. From 1997 to
1998, he was an Assistant Researcher in Department of
Informatics, Faculty of Science, Aleppo University.

Figure D.1: The original and encrypted images using
PYRAMIDS with 128-bits
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