
International Journal of Network Security, Vol.1, No.1, PP.46–51, July 2005 (http://isrc.nchu.edu.tw/ijns/) 46

Privacy Preserving K-nearest Neighbor

Classification

Justin Zhan1, LiWu Chang2 and Stan Matwin1

(Corresponding author: Justin Zhan)

School of Information Technology & Engineering, University of Ottawa1

SITE building, 800 King Edward Ave. Ottawa, Ontario, K1N 6N5, Canada (Email: {zhizhan, stan}@site.uottawa.ca)

Center for High Assurance Computer Systems, Naval Research Laboratory2

4555 Overlook Avenue SW, Washington DC 20375-5337, USA (Email: lchang@itd.nrl.navy.mil)

(Received March 22, 2005; revised and accepted April 21, 2005)

Abstract

This paper considers how to conduct k-nearest neighbor
classification in the following scenario: multiple parties,
each having a private data set, want to collaboratively
build a k-nearest neighbor classifier without disclosing
their private data to each other or any other parties.
Specifically, the data are vertically partitioned in that all
parties have data about all the instances involved, but
each party has its own view of the instances - each party
works with its own attribute set. Because of privacy con-
straints, developing a secure framework to achieve such
a computation is both challenging and desirable. In this
paper, we develop a secure protocol for multiple parties to
conduct the desired computation. All the parties partic-
ipate in the encryption and in the computation involved
in learning the k-nearest neighbor classifiers1.

Keywords: k-nearest neighbor classifier, Privacy, security

1 Introduction

We address the following problem: multiple parties are
cooperating on a data mining task. Each of the parties
owns data pertinent to the aspect of the task addressed by
this party. More specifically, the data consist of instances,
all parties have data about all the instances involved, but
each party has its own view of the instances - each party
works with its own attribute set. The parties may be
unwilling to release their attribute values to other parties
due to privacy or confidentiality of the data . How can we
structure information sharing between the parties so that
the data will be shared for the purpose of data mining,
while at the same time specific attribute values will be
kept confidential by the parties to whom they belong?

1The preliminary version of this paper has been published in
IEEE International Conference on Granular Computing (GrC 2005).

This is the task addressed in this paper. In the privacy-
oriented data mining this task is known as data mining
with vertically partitioned data.

In this paper, we focus on the following data mining
algorithm: the k-nearest neighbor classification. The ob-
jective of k-nearest neighbor classification is to discover k
nearest neighbors for a given instance, then assign a class
label to the given instance according to the majority class
of the k nearest neighbors. Our goal is not only to achieve
the above objective, but also to preserve the data privacy.
Our contribution is to develop a secure protocol based on
homomorphic encryption and random perturbation tech-
niques.

The paper is organized as follows: We describe the k-
nearest neighbor classification procedure in Section 2. We
then present our proposed secure protocols in Section 3.
The related work is discussed in Section 4. We give our
conclusion in Section 5.

2 Build K-Nearest Neighbor Clas-

sifiers on Private Data

The k-nearest neighbor classification is an instance-based
learning algorithm that has shown to be very effective
for a variety of problem domains. The algorithm as-
sumes that all instances correspond to points in the n-
dimensional space. The key element of this scheme is the
availability of a similarity measure that is capable of iden-
tifying neighbors. The nearest neighbors of an instance
are defined in terms of the standard Euclidean distance.
More precisely, let an arbitrary instance x be described by
the feature vector 〈a1(x), a2(x), · · · , am(x)〉, where ar(x)
denotes the value of the rth attribute of instance x. Then
the distance between two instances xi and xj is defined



International Journal of Network Security, Vol.1, No.1, PP.46–51, July 2005 (http://isrc.nchu.edu.tw/ijns/) 47

as d(xi, xj), where

d(xi, xj) =

√

√

√

√

m
∑

r=1

(ar(xi)− ar(xj))2. (1)

2.1 Problem Definition

We consider the scenario where multiple parties, each hav-
ing a private data set (denoted by D1, D2, · · · and Dn

respectively), want to collaboratively build a k-nearest
neighbor classifier on the concatenation of their data sets.
Because they are concerned about their data privacy, nei-
ther party is willing to disclose its raw data set to others.
Without loss of generality, we make the following assump-
tions about the data sets: (i) D1, D2, · · · and Dn contain
the same number of records. Let N denote the total num-
ber of records for each data set; (ii) The identities of the
ith (for i ∈ [1, N ]) record in D1, D2, · · · and Dn are the
same. (iii) The class labels are known by all the parties;
(iv) The total number of parties, n, is greater than 2;
(v) Each party receives only a portion of the query input
according to her attribute set. In other words, one party
does not know what values of the input query are received
by other parties.

2.2 K-nearest Neighbor Classification

Procedure

In this paper, we consider learning discrete-valued target
functions of form f : Rn −→ V , where V is the finite set
v1, v2, · · · , vs. The following is the procedure for building
a k-nearest neighbor classifier on [D1 ∪ D2 · · · ∪ Dn].

1) Training algorithm:

• For each training example (x, f(x)), add the ex-
ample to the list training-examples.

2) Classification algorithm: Given a query instance xq

to be classified,

• Let x1, · · · xk denote the k instances from
training-examples that are nearest to xq

• Return

f̂(xq)←− arg max
v∈V

k
∑

i=1

δ(v, f(xi)),

where δ(a, b) = 1 if a = b and where δ(a, b) = 0
otherwise.

2.3 How to Obtain the K-nearest Neigh-

bor Instances

Given a query instance xq, we want to compute the dis-
tance between xq and each of the N training instances.
Since each party holds only a portion of a training in-
stance, each party computes her portion of the distance

measure (called the distance portion) according to her at-
tribute set. To decide the k-nearest neighbors of xq, all
the parties need to sum their distance portions together.
For example, assume that the distance portions for the
first instance are s11, s12, · · ·, s1n; and the distance por-
tions for the second instance are s21, s22, · · ·, s2n. To com-
pute whether the distance between the first instance and
xq is larger than the distance between the second instance
and xq, we need compute whether

∑n

i=1 s1i ≥
∑n

i=1 s2i.
How to obtain this result without compromising the data
privacy? A naive solution is that those parties disclose
their distances portions to each other, and they can then
easily decide the k nearest neighbors by comparing the
distances. However, the naive solution will lead to pri-
vate data disclosure. The reasons are as follows: one
party can make multiple queries, and if he gets the dis-
tance portions from each query, then he can identify the
private data. Let’s use an example to illustrate this prob-
lem. Assume that the query instance contains 2 non-zero
values, e.g., xq = 1.2, 4.3, 0, · · · , 0, and P1 holds the first
two attributes. Then, the query requester can learn the
private values of P1 with two queries. Firstly, he uses xq

to get a d value. He uses another x′

q = 5.6, 4.8, 0, · · · , 0 to
get a value d′. He can solve the following two equations
to get the first and second elements (denoted by y1 and
y2) of xi which are supposed to be private:

d =
√

(y1 − 1.2)2 + (y2 − 4.3)2),

d′ =
√

(y1 − 5.6)2 + (y2 − 4.8)2.

How to securely compute the k nearest neighbors with-
out the help of a trusted party presents a challenge. In
next section, we develop a secure protocol to tackle this
challenge.

3 Secure Computing Protocol

3.1 Introducing Homomorphic Encryp-

tion

In our secure protocols, we use homomorphic encryption
[9] keys to encrypt the parties’ private data. In partic-
ular, we utilize the following property of the homomor-
phic encryption functions: e(a1) × e(a2) = e(a1 + a2)
where e is an encryption function; a1 and a2 are the
data to be encrypted. Because of the property of as-
sociativity, e(a1 + a2 + .. + an) can be computed as
e(a1)× e(a2)× · · · × e(an) where e(ai) 6= 0. That is

e(a1 + a2 + · · ·+ an) = e(a1)× e(a2)× · · · × e(an) (2)

3.2 Protocol

Without loss of generality, assuming Pl has a private
distance portion of the ith training instance, sil, for
i ∈ [1, N ], l ∈ [1, n]. The problem is to decide whether
∑n

l=1 sil ≤
∑n

l=1 sjl for i, j ∈ [1, N ](i 6= j) and select



International Journal of Network Security, Vol.1, No.1, PP.46–51, July 2005 (http://isrc.nchu.edu.tw/ijns/) 48

k smallest values, without disclosing each distance por-
tion. We will provide a solution which uses homomorphic
encryption and random perturbation techniques. Before
describing the protocol, we randomly select a key gener-
ator, e.g., Pn.

Protocol 1 (Secure Computing Protocol)
Step I: Compute e(

∑n

l=1 sil) for i ∈ [1, N ].

1) Key and random number generation

a. Pn generates a cryptographic key pair (d, e) of
a semantically-secure homomorphic encryption
scheme and publishes its public key e. Let e(.)
denote encryption and d(.) denote decryption.

b. Pl generates N random numbers ril, for all i ∈
[1, N ], l ∈ [1, n].

2) Forward transmission

a. P1 computes e(si1 + ri1), for i ∈ [1, N ], and
sends them to P2.

b. P2 computes e(si1 + ri1)× e(si2 + ri2) = e(si1 +
si2 +ri1 +ri2), where i ∈ [1, N ], and sends them
to P3.

c. Repeat (a) and (b) until Pn−1 obtains e(si1 +
si2 + · · ·+ si(n−1) + ri1 + ri2 + · · ·+ ri(n−1)), for
all i ∈ [1, N ].

d. Pn computes e(sin), i ∈ [1, N ], and sends them
to Pn−1.

3) Backward transmission

a. Pn−1 computes e(−ri(n−1)), for i ∈ [1, N ] and
sends them to Pn−2.

b. Pn−2 computes e(−ri(n−1)) × e(−ri(n−2)) =
e(−ri(n−1)−ri(n−2)), i ∈ [1, N ], and sends them
to Pn−3.

c. Repeat (a) and (b) until P1 obtains ei1 =
e(−ri1 − ri2 − · · · − ri(n−1)), for all i ∈ [1, N ].

d. P1 sends ei1, for i ∈ [1, N ], to Pn−1.

4) Computation of e(
∑n

l=1 sil), for i ∈ [1, N ]

a. Pn−1 computes ei(n−1) = e(si1 + si2 + · · · +
si(n−1) + ri1 + ri2 + · · · + ri(n−1)) × e(sin) =
e(si1 + si2 + · · ·+ si(n−1) + sin + ri1 + ri2 + · · ·+
ri(n−1)), i ∈ [1, N ].

b. Pn−1 computes ei(n−1) × ei1 = e(
∑n

l=1 sil), for
i ∈ [1, N ] and l ∈ [1, n].

Step II: Compute e(
∑n

l=1−sjl) for j ∈ [1, N ].

1) Random number generation

a. Pl generates N random numbers r′jl, for all j ∈
[1, N ], l ∈ [1, n].

2) Forward transmission

a. P1 computes e(−sj1 + r′j1), for j ∈ [1, N ], and
sends them to P2.

b. P2 computes e(−sj1 + r′j1) × e(−sj2 + r′j2) =
e(−sj1 − sj2 + r′j1 + r′j2), where j ∈ [1, N ], and
sends them to P3.

c. Repeat (a) and (b) until Pn−1 obtains e(−sj1 −
sj2 − · · · − sj(n−1) + r′j1 + r′j2 + · · · + r′

j(n−1)),

for all j ∈ [1, N ].

d. Pn computes e(−sjn), j ∈ [1, N ], and sends
them to Pn−1.

3) Backward transmission

a. Pn−1 computes e(−r′
j(n−1)), for j ∈ [1, N ] and

sends them to Pn−2.

b. Pn−2 computes e(−r′
j(n−1)) × e(−r′

j(n−2)) =

e(−r′
j(n−1)−r′

j(n−2)), j ∈ [1, N ], and sends them
to Pn−3.

c. Repeat (a) and (b) until P1 obtains ej1 =
e(−r′j1 − r′j2 − · · · − r′

j(n−1)), for all j ∈ [1, N ].

d. P1 sends ej1, for j ∈ [1, N ], to Pn−1.

4) Computation of e(
∑n

l=1−sjl), for j ∈ [1, N ]

a. Pn−1 computes ej(n−1) = e(−sj1 − sj2 − · · · −
sj(n−1) + r′j1 + r′j2 + · · ·+ r′

j(n−1))× e(−sjn) =

e(−sj1 − sj2 − · · · − sj(n−1) − sjn + r′j1 + r′j2 +
· · ·+ r′j(n−1)), j ∈ [1, N ].

b. Pn−1 computes ej(n−1) × ej1 = e(
∑n

l=1−sjl),
for j ∈ [1, N ] and l ∈ [1, n].

Step III: Compute the k nearest neighbors

1) Pn−1 computes ei(n−1) × ej(n−1) = e(
∑n

l=1 sil −
∑n

l=1 sjl), for i, j ∈ [1, N ], and collects the results
into a sequence Φ which contains N(N−1) elements.

2) Pn−1 randomly permutes this sequence and obtains
the permuted sequence denoted by Φ′, then sends Φ′

to Pn.

3) Pn decrypts each element in sequence Φ′. He assigns
the element +1 if the result of decryption is not less
than 0, and −1, otherwise. Finally, he obtains a
+1/− 1 sequence denoted by Φ′′.

4) Pn sends Φ′′ to Pn−1 who computes k smallest ele-
ments. (Details are given in Section 3.3.) They are
the k nearest neighbors for a given query instance xq.
He then decides the class label for xq.

3.3 How to Compute the Smallest k Ele-

ments

Pn−1 is able to remove permutation effects from Φ′′ (the
resultant sequence is denoted by Φ′′′) since she has the
permutation function that she used to permute Φ, so
that the elements in Φ and Φ′′′ have the same order.



International Journal of Network Security, Vol.1, No.1, PP.46–51, July 2005 (http://isrc.nchu.edu.tw/ijns/) 49

Table 2: An example

S1 S2 S3 S4 Weight
S1 +1 -1 -1 -1 -2
S2 +1 +1 -1 +1 +2
S3 +1 +1 +1 +1 +4
S4 +1 -1 -1 +1 0

It means that if the qth position in sequence Φ denotes
e(

∑n

l=1 sil −
∑n

l=1 sjl), then the qth position in sequence
Φ′′′ denotes the decrypted result of

∑n

l=1 sil −
∑n

l=1 sjl.
We encode it as +1 if

∑n

l=1 sil ≥
∑n

l=1 sjl, and as -1 oth-
erwise. Pn−1 has two sequences: one is Φ, the sequence
of e(

∑n

l=1 sil −
∑n

l=1 sjl), for i, j ∈ [1, N ](i 6= j), and
the other is Φ′′′, the sequence of +1/ − 1. The two se-
quences have the same number of elements. Pn−1 knows
whether or not

∑n

l=1 sil is larger than
∑n

l=1 sjl by check-
ing the corresponding value in the Φ′′′ sequence. For
example, if the first element Φ′′′ is −1, Pn−1 concludes
∑n

l=1 sil <
∑n

l=1 sjl. Pn−1 examines the two sequences
and constructs the index table (Table 1) to compute the
k nearest neighbors.

In Table 1, +1 in entry ij indicates that the distance
measure of the row (e.g.,

∑n

l sil of the ith row) is not
less than the distance measure of a column (e.g.,

∑n

l sjl

of the jth column); -1, otherwise. Pn−1 sums the index
values of each row and uses this number as the weight of
the distance measure in that row. She then selects the
instances, that correspond to the k smallest weights, as
the k nearest neighbors.

To make it clearer, let us illustrate it by an exam-
ple. Assume that: (1) there are 4 elements denoted
by S1 =

∑n

l=1 s1l, S2 =
∑n

l=1 s2l, S3 =
∑n

l=1 s3l, and
S4 =

∑n

l=1 s4l. (2) S1 < S4 < S2 < S3; (3) the se-
quence Φ is [e(S1 − S2), e(S1 − S3), e(S1 − S4), e(S2 −
S3), e(S2 − S4), e(S3 − S4)]. The sequence Φ′′′ will be
[−1,−1,−1,−1, +1, +1]. According to Φ and Φ′′′, Pn−1

builds the Table 2. From the table, Pn−1 knows S1 <
S4 < S2 < S3 according to their weights, e.g., S1 is the
smallest element since its weight, which is -2, is the small-
est. Thus, Pn−1 knows the k nearest neighbors for a given
query instance xq.

In the next section, we show the correctness of protocol,
the preservation of data privacy, and its complexity.

3.4 Analysis of Correctness, Privacy and

Complexity

Correctness analysis Assuming all of the parties follow
the protocol, the protocol correctly finds the k-nearest
neighbors for a given query instance xq . In step I, Pn−1

obtains e(
∑n

l=1 sil) for i ∈ [1, N ]. In step II, Pn−1 gets
e(

∑n

l=1 sjl) for j ∈ [1, N ]. The key issue is that Pn−1

actually obtains the k-nearest neighbors in step III. This
property directly follows the discussion of Section 3.3.

Privacy analysis Assuming all of the parties follow the
protocol, one party’s distance portion cannot be disclosed

to another party. In the protocol, before one party sends
his private data to any other parties, she firstly adds
in a random number known by her and then uses a se-
mantically secure scheme to encrypt the data. There-
fore, other parties cannot identify her actual data. Even
though Pn has the decryption key d, what he can ob-
tain is a permuted sequence of

∑n

l=1 sil −
∑n

l=1 sjl, for
i, j ∈ [1, N ](i 6= j) . By knowing this sequence, each sin-
gle private value cannot be identified. since each private
element is from the real domain. Neither can Pn−1 ob-
tain private values. This is because Pn−1 knows only the
following sequences: Φ, Φ′′ and Φ′′′. By knowing these
information, private data values cannot be obtained be-
cause the equations discussed in Section 2.3 can’t be con-
structed.

Collusion Resistance The protocol tolerates colluding
parties for a single query only if the number of non-
colluding parties is at least one. If Pn doesn’t collude
with other parties, then there is no information disclo-
sure. We are interested in the case where Pn and Pn−1

are the colluding parties. In this case, the colluding par-
ties know

∑n

l=1 sil−
∑n

l=1 sjl. To exactly know a specific
sil or sjl, for (l ∈ [1, n − 2]), one needs to know exact
n−2 distance portions. However, if there are at least one
party (e.g., P1) who doesn’t collude with other parties,
then the colluding parties can only obtain si1 − sj1. By
knowing this value, one cannot know si1 or sj1. Hence,
the portion sil of a particular party l is not disclosed. In
practice, there must be at least one party who doesn’t col-
lude with other parties, otherwise, all the parties collude
with each other and they can simply share their private
data. Therefore, the protocol can tolerate the colluding
parties. For the multiple-query case, where each query re-
quester can make many queries, Pn can’t be the requester
of a query. Pn and Pn−1 can’t collude with other parties
to ensure the data privacy.

Complexity The complexity are dominated by step III.
The total computation and communication costs are both
O(N2).

4 Related Work

Secure Multi-Party Computation A Secure Multi-party
Computation (SMC) problem deals with computing any
function on any input, in a distributed network where
each participant holds one of the inputs, while ensuring
that no more information is revealed to a participant in
the computation than can be inferred from that partic-
ipant’s input and output. The SMC problem literature
was introduced by Yao [12]. It has been proved that
for any polynomial function, there is a secure multi-party
computation solution [6]. The approach used is as follows:
the function F to be computed is firstly represented as a
combinatorial circuit, and then the parties run a short
protocol for every gate in the circuit. Every participant
gets corresponding shares of the input wires and the out-
put wires for every gate. This approach, though appealing



International Journal of Network Security, Vol.1, No.1, PP.46–51, July 2005 (http://isrc.nchu.edu.tw/ijns/) 50

Table 1: Index table of distance measures of N instances
∑n

l s1l

∑n

l s2l

∑n

l s3l · · ·
∑n

l sNl
∑n

l s1l +1 +1 -1 · · · -1
∑n

l s2l -1 +1 -1 · · · -1
∑n

l s3l +1 +1 +1 · · · +1
· · · · · · · · · · · · · · · · · ·

∑n

l sNl +1 +1 -1 · · · +1

in its generality and simplicity, is highly impractical for
large datasets.

Privacy-Preserving Data Mining In early work on
privacy-preserving data mining, Lindell and Pinkas [8]
propose a solution to privacy-preserving classification
problem using oblivious transfer protocol, a powerful tool
developed by secure multi-party computation (SMC) re-
search. The techniques based on SMC for efficiently deal-
ing with large data sets have been addressed in [11]. In
[13], a secure protocol for multi-party computation of
boolean vector product with a commodity server [3] was
developed. Randomization approaches were firstly pro-
posed by Agrawal and Srikant in [2] to solve privacy-
preserving data mining problem. Researchers proposed
more random perturbation-based techniques to tackle the
problems (e.g., [4, 14]). In addition to perturbation, ag-
gregation of data values [10] provides another alternative
to mask the actual data values. In [1], authors stud-
ied the problem of computing the kth-ranked element.
Dwork and Nissim [5] showed how to learn certain types
of boolean functions from statistical databases in terms of
a measure of probability difference with respect to proba-
bilistic implication, where data are perturbed with noise
for the release of statistics. In this paper, we focus on
privacy-preserving among the inter-party computation.
In [7], Kantarcioglu and Clifton proposed an approach to
solve the problem of private computation of a distributed
k-nn classifier over horizontally partitioned data. In this
paper, we provide a solution for building k-nn classifiers
on vertically partitioned data using homomorphic encryp-
tion and random perturbation techniques.

5 Conclusion

In this paper, we consider the problem of privacy-
preserving collaborative k-nearest neighbor classification.
In particular, we study how multiple parties can collabo-
ratively build a k-nearest neighbor classifier over the verti-
cally partitioned data. We develop a secure collaborative
k-nearest neighbor classification protocol based on homo-
morphic encryption scheme. In our protocol, the parties
do not need to send all their data to a central, trusted
party. Instead, we use the homomorphic encryption and
random perturbation techniques to conduct the computa-
tions across the parties without compromising their data
privacy. Correctness of our protocols is shown and com-
plexity of the protocols is addressed as well.

References

[1] G. Aggarwal, N. Mishra, and B. Pinkas, “Secure
computation of the K th-ranked element,” in EU-
ROCRYPT pp 40-55, 2004.

[2] R. Agrawal and R. Srikant, “Privacy-preserving data
mining,” in Proceedings of the ACM SIGMOD Con-
ference on Management of Data, pp. 439–450. ACM
Press, May 2000.

[3] D. Beaver, “Commodity-based cryptography (ex-
tended abstract),” in Proceedings of the twenty-ninth
annual ACM symposium on Theory of computing, El
Paso, TX USA, May 4-6 1997.

[4] W. Du and Z. Zhan, “Using randomized response
techniques for privacy-preserving data mining,” in
Proceedings of The 9th ACM SIGKDD International
Conference on Knowledge Discovery and Data Min-
ing, Washington, DC, USA, August 24-27 2003.

[5] C. Dwork and K. Nissim, “Privacy-preserving
datamining on vertically partitioned databases,” in
CRYPTO 2004 528–544.

[6] O. Goldreich, “Secure multi-party computation
(working draft),” http://www.wisdom.weizmann.ac
.il/home/oded/public html/foc.html, 1998.

[7] M. Kantarcioglu and C. Clifton, “Privately comput-
ing a distributed k-nn classifier,” in the 8th European
Conference on Principles and Practice of Knowledge
Discovery in Databases (PKDD), pp.279-290, Pisa,
Italy, Sept.20-24,2004.

[8] Y. Lindell and B. Pinkas, “Privacy preserving data
mining,” in Advances in Cryptology - Crypto2000,
Lecture Notes in Computer Science, Volume 1880,
2000.

[9] P. Paillier, “Public-key cryptosystems based on
composite degree residuosity classes,” in Advances
in Cryptography - EUROCRYPT ’99, pp 223-238,
Prague, Czech Republic, May 1999.

[10] L. Sweeney, “k-anonymity: a model for protecting
privacy,” in International Journal on Uncertainty,
Fuzziness and Knowledge-based Systems 10 (5), pp
557–570, 2002.

[11] J. Vaidya and C. W. Clifton, “Privacy preserv-
ing association rule mining in vertically partitioned
data,” in Proceedings of the 8th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and
Data Mining, July 23-26, 2002, Edmonton, Alberta,
Canada.

[12] A. C. Yao, “Protocols for secure computations,” in
Proceedings of the 23rd Annual IEEE Symposium on
Foundations of Computer Science, 1982.



International Journal of Network Security, Vol.1, No.1, PP.46–51, July 2005 (http://isrc.nchu.edu.tw/ijns/) 51

[13] Z. Zhan, L. Chang, and S. Matwin, “Privacy-
preserving collaborative data mining,” in Founda-
tion and Novel Approach in Data Mining, edited by
T.Y. Lin, S. Ohsuga, C.J. Liau, and X. Hu Springer-
Verlag, to appear.

[14] Z. Zhan, L. Chang, and S. Matwin, “Privacy-
preserving multi-party decision tree induction,” in
the 18th annual IFIP WG 11.3 working conference
on data and application security, Sitges, Catalonia,
Spain, 2004.

Justin Zhan is a part-time profes-
sor at the School of Information Tech-
nology and Engineering, University of
Ottawa, Canada. His research inter-
est contains privacy and security issues
in data mining, network security and
wireless network security.

LiWu Chang is a research scientist
at Center for High Assurance Com-
puter Systems of Naval Research Lab-
oratory, USA. His research interest
includes methodologies of intelligent
computation, decision analysis, and
secure computations.

Stan Matwin is a professor at the
School of Information Technology and
Engineering, University of Ottawa,
Canada. His research is in machine
learning, data mining, and their ap-
plications, as well as in technological
aspects of Electronic Commerce.


