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Abstract

A (t, n) threshold signature scheme allows any t or more
signers to cooperatively sign messages on behalf of a
group, but t − 1 or fewer signers cannot. Wu and Hsu
recently proposed a new (t, n) threshold signature scheme
using self-certified public keys. In their scheme, the au-
thentication of the self-certified individual/group public
keys can be confirmed simultaneously in the procedure
of verifying the individual/group signatures. Compared
with threshold signature schemes based on the certified-
based public key systems, their scheme is more efficient.
However, the author of this paper points out that there
are some problems in the Wu-Hsu scheme. The registra-
tion stage cannot work since there is a deadlock in the
computation of the self-certified individual public keys.
Moreover, some t or more malicious signers can conspire
together against the group, and the system authority SA
can also conspire with a malicious user to forge the group
public key without being detected. Finally, we propose
an improvement to counter the two attacks. Its signature
computation and verification are more efficient than that
of the Wu-Hsu scheme. The system authority SA can
identify the actual signers, while they are anonymous to
outsiders.
Keywords: Coalition attack, cryptography, self-certified,
threshold signature

1 Introduction

Digital signatures provide integrity, unforgeability and
non-repudiation properties for electronic documents, and
play the important role in electronic commerce or modern
cryptographic applications. A (t, n) threshold signature
scheme [2] is a group oriented signature scheme, which al-
lows any t or more signers to cooperatively sign messages
on behalf of the group, but t− 1 or fewer signers do not.

The concept of the public key cryptography was in-
vented by Diffie and Hellman [3] solving some trouble-
some aspects of the key management in designing secure

cryptosystems. In public key cryptosystems, each user
chooses a pair of keys: private key and public key. Only
the former is managed by the user secretly. The latter can
be stored in a file managed by a system authority SA. It
is unnecessary to safeguard the public key from exposure,
since its secrecy is not required for secure communications
or digital signatures. However, the public key cryptosys-
tems suffer from the well-known authentication problem
[5]. If an imposter supplies a valid but incorrect public
key, a user could unknowingly encipher confidential data
that would be decipherable by the imposter or be tricked
into accepting messages with wrong signatures.

There are three possible approaches to provide authen-
tication of public keys.

1) Certification-based public key. Each user chooses his
pair of private/public keys, and registers him to a
trusted third, certification authority SA. Then SA in
turn issues a certificate corresponding to the public
key of the user, which is the SA’s signature on the
pair of the user’s public key and identity. SA should
maintain a public key directory and a revocation list
inquired by verifiers.

2) Identity-based public key [11]. Each user’s public key
is simply his identity string, and the corresponding
private key is computed by SA with SA’s private key.
Verifiers need not check the public key. All users
must trust SA, since SA knows their private keys.

3) Self-certified-based public key [5]. Each user chooses
his pair of private/public keys. SA computes a cer-
tificate of user’s public key and identity string with
SA’s private key. The verification of self-certified
public key can be carried out in the subsequent
cryptographic applications in a logically single step.
Compared with Certification-based public key, Self-
certified-based public key can reduce the computa-
tion and storage. Compared with Identity-based
public key, Self-certified-based public key can pro-
vide more security confidence.
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Girault defined the following three levels of trust in
models:

1) The SA knows (or can easily compute) the users’ pri-
vate keys and is capable of impersonating any user
without being detected.

2) The SA does not know the users’ private keys, but it
can still impersonate any user by generating a false
certificate that may be used without being detected.

3) The SA does not know (and cannot compute) the
users’ private keys and if it generates false certificates
for users, it can be proven.

With this definition, in schemes of level 1 and level
2, the SA must be fully trusted by the users, while in
schemes of level 3, it is considered as a potentially pow-
erful adversary that may use any means to impersonate
the users.

Recently, Wu and Hsu [12] proposed a new (t, n)
threshold signature scheme using self-certified public keys,
in which the verification of public keys can be accom-
plished within the signature verification procedure. This
signature scheme is more efficient since it is elaborated on
the merits inherent in the self-certified public key system.
However, the author of this paper points out that there
are some problems in the Wu-Hsu scheme. The registra-
tion stage cannot work, since there is a deadlock in the
computation of the self-certified individual public keys.
Moreover, some t or more malicious signers can conspire
together against the group, and the SA can also conspire
with a malicious user to forge the group public key with-
out being detected. Hence, The Wu-Hsu signature scheme
at most is only of level 2.

Finally, we propose an improvement to counter the two
attacks to achieve level 3. Its signature computation and
verification are more efficient than those of the Wu-Hsu
scheme. The system authority SA can identify the actual
signers, while they are anonymous to outsiders.

2 Brief Review of the Wu-Hsu
Threshold Signature Scheme
Using Self-certified Public Keys

The Wu-Hsu scheme consists of four stages: the system
setup, the registration, the individual signature genera-
tion and verification, and the group signature generation
and verification. In the system environments, there exist
a system authority SA and a clerk (CLK). The responsi-
bilities of SA are to generate the system parameters and
to issue users’ individual public keys and the group public
key, while those of CLK are to validate individual signa-
tures and to combine them into a group signature.

2.1 System Setup

Initially, SA chooses a one-way hash function h, two large
primes p and q, and a generator g of order q over GF (p),

where q|(p − 1). After that, SA determines a private-
key/public-key pair (γ, β) where γ ∈ Z∗q and β = gγ mod
p. SA publishes p, q, g, h and β, while keeps γ secret.

2.2 Registration

Let G = {u1, u2, · · · , un} be the registering group of n
users, IDi be the identity information, such as name, ad-
dress, etc., associated to ui ∈ G and GID be the iden-
tity information of G. The procedure for generating self-
certified private-key/public-key pair of each group mem-
ber ui ∈ G and the group G is described below.

Step 1. ui randomly chooses a (t − 1)-degree poly-
nomial fi(z) =

∑t−1
j=0 aijz

j mod q, where aij ∈ Zq

for j = 0, 1, · · · , t − 1, and publishes the check vec-
tor (cvi0 = gai0 mod p, cvi1 = gai1 mod p, · · · , cvit−1 =
gait−1 mod p).

Step 2. ui computes fi(IDj) and then sends it to uj ∈
G(j 6= i) via a secure channel.

Step 3. Upon receiving fj(IDi) sent from uj ∈ G(j 6=
i), ui checks its validity by the following equality:

gfj(IDi) =
t−1∏

k=0

cv
IDk

i

jk mod p.

If it fails, he requests uj to re-sendfj(IDi).
Step 4. If all fj(IDi)’s sent from other users are valid

for j = 1, 2, · · · , n and j 6= i, ui computes his secret
shadow as FG(IDi) =

∑n
j=1 fj(IDi) mod q.

Step 5. ui computes the registering message (vi1, vi2)
and sends it to SA, where

vi1 = g−ai0 mod p = cv−1
i0 mod p,

vi2 = g−FG(IDi) mod p.

Step 6. Upon receiving all (vi1, vi2)’s from ui ∈ G for
i = 1, 2, · · · , n, SA performs the following tasks:

(6-1) Checks the validity of vi1 and vi2 by the following
equalities, respectively:

vi1cvi0 = 1 mod p,

vi2 =
n∏

j=1

t−1∏

k=0

cv
−IDk

i

jk mod p.

(6-2) Randomly chooses two (t−1)-degree polynomials
FSA(z) and FGID(z) as

FSA(z) =
t−1∑

j=1

bjz
j + b0 mod q, and

FGID(z) =
t−1∑

j=1

cjz
j + h(YG||GID) mod q,

where b0, bj , cj ∈ Z∗q (for j = 1, 2, · · · , t− 1).
(6-3) Computes the self-certified group public key YG

for G as YG = (
∏n

i=1 vi1)gFSA(0) − h(GID) mod p. It can
be seen that YG = g−FG(0)gFSA(0) − h(GID) mod p.
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(6-4) Computes the self-certified individual public key
yi for ui ∈ G(i = 1, 2, · · · , n) as

yi = vi2g
FSA(IDi)βdi − h(IDi||GID) mod p,

where di = FGID(IDi)− h(yi||IDi||GID) mod q.
(6-5) Computes the witness wi for ui ∈ G(i =

1, 2, · · · , n) as wi = FSA(IDi) + rFFID mod q.
(6-6) Sends wi to ui ∈ G and publish all self-certified

individual public keys yi’s (for i = 1, 2, · · · , n),and publish
the group public key YG.

Step 7. After receiving wi, ui computes his self-
certified private key xi as xi = wi − FG(IDi) mod q.

Step 8. Each user ui validates yi by checking the fol-
lowing equality:

gxi = (yi + h(IDi||GID))βh(yi||(IDi||GID) mod p.

Step 9. For verifying the self-certified group public
key YG, each user ui in G first computes and broadcasts
ei = gxiLi mod p to all other users in G, where Li =∏t

j=1,j 6=1
−IDj

IDi−IDj
mod q. Then each user can validate

YG by checking the following equality:
n∏

i=1

ei = (YG + h(GID))βh(YG||GID) mod p.

It can be seen that
n∏

i=1

ei = gFSA(0)−FG(0)+rh(YG||GID) mod p.

Hence, we denote the self-certified group private key of
G as XG, which is unknown to all users and SA, and
XG = FSA(0)− FG(0) + rh(YG||GID) mod q.

2.3 Individual Signature Generation and
Verification

Let M be the message to be signed. Without loss of
generality, let SG = {u1, u2, · · · , ut} be the subgroup of
G with t members who want to sign M on behalf of G.
To generate the individual signature for M , each ui ∈ SG
performs the following steps:

Step 1. Chooses a random integer ki ∈ Z∗q and com-
putes ri = gki mod p. Then, ui broadcasts ri to other
participating users uj ∈ SG (for j = 1, 2, · · · , t, and j 6= i)
and CLK.

Step 2. Computes R after receiving all rj ’s from uj ∈
SG (for j = 1, 2, · · · , t, and j 6= i) as R =

∏t
i=1 rri

i mod p.
Note that CLK also computes R by the same equality.

Step 3.Computes si as si = kirih(M ||R) + LixiR mod
q, where Li =

∏t
j=1,j 6=i

−IDj

IDi−IDj mod q.
Step 4. Sends (ri, si) to CLK as the individual signa-

ture for M . Upon receiving (ri, si) from ui ∈ SG, CLK
checks its validity and the authenticity of the self-certified
individual public key yi with respect to ui by the following
equality:

gsi = r
rih(M||R)
i ((yi + h(IDi||GID))βh(yi||IDi||GID))RLi

modp.

If it holds, then both (ri, si) and yi are valid.

2.4 Group Signature Generation and
Verification

If all individual signatures are verified, then CLK com-
putes S =

∑t
i=1 Si mod q. Here, (R, S) is the group sig-

nature for M with respect to G. To verify the group
signature, any verifier checks the following equality:

gs = Rh(M ||R)((YG + h(GID))βh(YG||GID))R mod p.

If it holds, then (R, S) is a valid group signature for M
signed by G with respect to the self-certified public key
YG. Note that only the group public key YG is involved
in the verification equality, while self-certified individual
public keys, y1, y2, · · · , yt, are excluded. Hence, the pro-
posed scheme provides signer anonymity.

3 Security Analyses of the Wu-
Hsu Threshold Signature
Scheme

There are some problems in the Wu-Hsu threshold sig-
nature scheme. Some involve consistency, others involve
security.

3.1 Computation of the Self-certified In-
dividual Public Key

First the anonymous reviewers pointed the first error in
“(6-2) Randomly chooses two (t − 1)-degree polynomials
FSA(z) and FFID(z) as

FSA(z) =
t−1∑

j=1

bjz
j + b0 mod q,

FFID(z) =
t−1∑

j=1

cjz
j + h(YG||GID) mod q,

where b0, bj , cj ∈ Z∗q (for j = 1, 2, · · · , t− 1).
(6-3) Computes the self-certified group public key YG

for G as YG = (
∏n

j=1 vi1g
FSA(0) − h(GID) mod p“.

The computation of YG should be computed between
FSA(z) and FFID(z), Since the computation of FFID(z)
needs YG.

However, there is a fatal error in the computation of
the self-certified individual public key.

“(6-4) Computes the self-certified individual public key
yi for ui ∈ G (i = 1, 2, · · · , n) as

yi = vi2g
FSA(IDi)βdi − h(IDi||GID) mod p,

where di = FGID(IDi)− h(yi||IDi||GID) mod q”.
There exists a deadlock in this equality, since the com-

putation of yi needs di, while that of di also needs yi.
There are perhaps two methods to solve this deadlock:
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1) Modifying di:
If di = FGID(IDi)− h(yi||IDi||GID) mod q, SA could
compute the self-certified individual public key yi for
ui ∈ G(i = 1, 2, · · · , n). But this modification would
results in a new security problem. Each user ui would
validate yi by checking the following equality:

gxi = (yi + h(IDi||GID))βh(IDi||GID) mod p.

Any adversary can easily forge the pair (xi, yi) of the
self-certified individual private/public keys without
the private key γ of SA

2) Modifying FSA(IDi):
SA chooses randomly ki and computes ki = gkivi2 −
h(IDi||GID) mod p. With the knowledge of its pri-
vate key γ, SA can find ci such that vi2g

ciβdi =
yi+h(IDi||GID) mod p. Then SA chooses polynomial
FSA(z) with FSA(IDi) = ci mod q, i = 1, 2, · · · , n. If
so, the polynomial FSA(z) is at least of order n − 1.
Hence all of the n users are required to cooperatively
sign messages on behalf of the group G.

3.2 Verification of the Self-certified
Group Public Key YG

“Step 9. For verifying the self-certified group key
YG, each user ui in G first computes and broadcasts
ei = gxiLi mod p to all other users in G, where Li =∏t

j=1,j 6=1
−IDj

IDi−IDj
mod q. Then each user can validate

YG by checking the following equality:
∏n

i=1 ei = (YG +
h(GID))βh(YG||GID) mod p”.

The order of the polynomials is t − 1, the polynomi-
als can be reconstructed from the Lagrange interpolating
polynomial given t secret shadows. Suppose that some t
users want to verify the self-certified group key YG. With-
out loss of generality, these users are u1, u2, · · · , ut. Each
user ui first computes and broadcasts ei = gxiLi mod p
to all other users, where

Li =
t∏

j=1,j 6=1

−IDj

IDi − IDj
mod q.

Thus, the verification equality should be

t∏

i=1

ei = (YG + h(GID))βh(YG||GID) mod p.

3.3 Coalition Attack by t Malicious Users

As Wu and Hsu pointed that the self-certified group pri-
vate key of G is XG, which is unknown to all users and
SA, and

XG = FSA(0)− FG(0) + γh(YG||GID) mod q

= FSA(0)− FG(0) + γFGID(0) mod q.

However, the self-certified private key xi of each user
is the secret shadow of the XG:

xi = wi − FG(IDi) mod q

= FSA(IDi)− FG(IDi) + γFGID(IDi) mod q.

If t or more malicious users pool their secret shadows
together, they can recover XG by applying Lagrange in-
terpolating polynomial [1]:

XG =
t∑

i=1

xiLi mod q,

where Li =
∏t

j=1,j 6=i
−IDj

IDi−IDj
mod q. Then each one of

them can compute valid signatures alone on behalf of the
group without the cooperation of other users afterwards.
Obviously, this violates the intent of the group. This
coalition attack is inherent in many threshold signature
schemes [7] using threshold secret share scheme, as long
as the private key can recover from secret shadows.

3.4 Coalition Attack by SA and a Mali-
cious User

If SA computes other self-certified group key YG’ as Y ′
G =

gk − h(GID) mod p, where k is random integer chosen by
SA. He would compute

x = k + γh(Y ′
G||GID) mod q,

such that

gx = (Y ′
G + h(GID))βh(Y ′G||GID) mod p.

With the knowledge of x, SA can easily compute the
signature (R, S) of any message M such that

gs = Rh(M ||R)((Y ′
G + h(GID))βh(Y ′G||GID)R mod p.

If Y ′
G is published as the self-certified group public key,

the outsiders cannot find this forgery. Suppose that some
t users want to verify the self-certified group public key
Y ′

G. If one user ui among the t users is the conspirer of
the malicious SA, instead of computing ei = gxiLi mod p,
he computes e

′
i = (Y

′
G +h(GID))βh(Y ′G||GID)gxiLi/((YG +

h(GID))βh(YG||GID)) mod p. Then (
∏t

j=1,j 6=i ej)e
′
i =

(Y
′
G + h(GID))βh(Y ′G||GID) mod p. Hence the probability

that the other users fail to find the forged group public
key is non- negligible.

Though the system authority SA does not know the se-
cret key of each user, he can still forge false group public
key and then forge group signatures without being de-
tected.

Therefore, the Wu-Hsu threshold signature scheme us-
ing self-certified public keys at most attains only level 2
defined by Girault.

4 Our Improvements

The system environments of the improved scheme are the
same as those of the Wu-Hsu scheme.
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4.1 System Setup

The system setup stage is the same as that of the original
scheme.

Initially, SA chooses a one-way hash function h, two
large primes p and q, and a generator g of order q over
GF (p), where q|(p − 1). After that, SA determines a
private-key/public-key pair (γ, β) where γ ∈ Z∗q and β =
gγ mod p. SA publishes p, q, g, h, and β, while keeps γ
secret.

4.2 Registration

Let G = {u1, u2, · · · , un} be the registering group of n
users. Each user ui with a pair of private/public keys
(xi, yi) chooses a secondary private key ai and computes
secondary public key

αi = gai mod p.

Then the user chooses a random integer w in Zq and com-
putes

r′ = gw mod p,

s′ = w − (xiyi + aiαi)h(r′, αi, IDi) mod q,

where IDi is the identity information, such as name, ad-
dress, etc., associated to ui ∈ G. Then the user ui

sends (r′, βws′, βwαi, βwIDi mod p) to the SA. The sys-
tem authority SA computes βw = (r′)γ mod p and recov-
ers (s′, αi, IDi). Then he verifies the secondary public key
αi by checking the following equality:

gs′(yyi

i ααi
i )h(r′,αi,IDi) = r′ mod p.

Note that the SA’s ability of tracing the actual signers
is dependent on the knowledge of the relationship between
the secondary public keys and users’ identities. Now the
transmission of (αi, IDi) is performed by using a secret
way. Hence the identity of the secondary public key αi is
anonymous to anyone except for the user and SA.

Then SA determines GID, which includes the identity
information of the group E, including the secondary pub-
lic key (αi for every user ui, the threshold value t and the
valid period. SA performs the following steps:

Step 1. SA randomly chooses an integer k and compute

r = gk mod p.

Then SA computes

b0 = k + γh(GID, r) mod q.

Thus gb0 = βh(GID,r)r mod p. SA performs a verifiable
secret sharing (VSS) scheme [8].

SA randomly chooses a (t − 1)-degree polynomial
FGID(z) as

FGID(z) =
t−1∑

j=1

bjz
j + b0 mod q,

where bj ∈ Z∗q for j = 1, · · · , t− 1, and publishes (GID, r)
and the check vector (cv0, cv1, · · · , cvt−1):

cv0 = gb0 = βh(GID,r)r mod p,

cv1 = gbi mod p,

...
...

cvt−1 = gbi−1 mod p.

Step 2. SA computes wi = FGID(i) mod q, and then
sends (GID, r, wi) to ui ∈ G via a secure channel similar to
the way used by the user. SA also sends (GID, r, i, αi, vi =
gwi mod p) to CLK.

Step 3. Upon receiving wi sent from SA, ui checks its
validity by the following equality:

gwi =
t−1∏

k=0

cvik

k mod p.

If it fails, he requests SA to re-send wi. CLK checks
(GID, r, i, αi, vi) by the following equality:

vi =
t−1∏

k=0

cvik

k mod p.

Here, CLK does not know the identity of the user ui.

4.3 Individual Signature Generation and
Verification

Let M be the message to be signed. Without loss of gener-
ality, let SG = {u1, u2, · · · , ut} be the subgroup of G with
t members who want to sign M on behalf of G. To gen-
erate the individual signature for M , each signer ui ∈SG
performs the following steps:

Step 1. Chooses a random integer ki ∈ Z∗q and com-
putes

ri = gki mod p.

Then, ui broadcasts ri to other participating signers uj ∈
SG (for j = 1, 2, · · · , t, and j 6= i) and CLK.

Step 2. Computes R after receiving all rj ’s from uj ∈
SG (for j = 1, 2, · · · , t, and j 6= i) as

R =
t∏

i=1

ri mod p.

Note that CLK also computes R by the same equality.
Step 3. Computes si as

si = ki − (aih(GID, r) + Liwi)E mod q,

where E = h(M, R), Li =
∏t

j=1,j 6=i
−j
i−j mod q.

Step 4. Sends (i, si) to CLK as the individual partial
signature for M .
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4.4 Group Signature Generation and
Verification

Upon receiving si(i = 1, 2, · · · , t), CLK computes S =∑t
i=1 si mod q. Here, (GID, (1, 2, · · · , t), r, E, S) is the

group signature for M with respect to G. To verify the
group signature, any verifier, including CLK, checks the
following equality:

h(M, gs((α1α2 · · ·αtβ)h(GID,r)r)E mod p) = E

If it holds, then (GID, (1, 2, · · · , t), r, E, S) is a valid
group signature for M signed by G. If CLK finds that
the (GID, (1, 2, · · · , t), r, E, S) is not valid, CLK checks
the following equalities:

gsi(αh(GID,r)
i vLi

i )E = ri mod p, for i = 1, 2, · · · , t,
where E = h(M, R), Li =

∏t
j=1,j 6=i

−j
i−j mod q with re-

spect to the self-certified individual public key αi and the
secondary public key vi of one anonymous signer ui. If it
holds, then both (ri, si) and (αi, vi) are valid.

To reduce the storage of signatures, (1, 2, · · · , t) can be
denoted by an integer, the ith bit of which is equal to 1
if and only if the secondary public key i is involved in the
verification equality.

Note that the secondary public keys α1, α2, · · · , αt of
the t signers are involved in the verification equality.
Hence, the improvement provides traceability, by which
system authority SA can identify the actual signers that
are anonymous to outsiders.

Theorem 4.1 If SA and users follows the protocol, the
verification equalities are always to hold.

Proof. First, b0 = k+γh(GID, r) mod q directly implies
gb0 = βh(GID,r)r mod p.

Second, vi = gwi =
∏t−1

k=0 cvik

k mod p. Then

si = ki − (aih(GID, r) + Liwi)E mod q

implies

gsi(gaih(GID,r)gwiLi)E = gki mod p.

Hence, gsi(αh(GID,r)
i (

∏t
k=0 cvik

k )Li)E = ri mod p. That
is, gsi(αih(GID, r)vLi

i )E = ri mod p. In addition,

t∏

i=1

gsi(αh(GID,r)
i vLi

i )E =
t∏

j=1

ri mod p, for i = 1, 2, · · · , t,

implies

g
∑t

i=1
si((

t∏

i=1

α
h(GID,r)
i )g

∑t

i=1
wiLi)E =

t∏

i=1

ri mod p.

Thus, gs((α1α2 · · ·αtβ)h(GID,r)r)E = R mod p by ap-
plying Lagrange interpolating polynomial. This is,
h(M, gs((α1α2 · · ·αtβ)h(GID,r)r)E mod p) = E. There-
fore, three verification equalities are always to hold.
Q.E.D.

5 Security Analyses and Perfor-
mance

5.1 Security

We assume that one of the generalized ElGamal signa-
ture scheme is secure [6]. The signature (r, s) satisfies the
following verification equality gs = ymrr mod p. We also
assume that the Schnorr signature scheme [10] is secure
in the random oracle model [9].

First, The signature (b0, r) satisfies gb0 =
βh(GID,r)r mod p, which is the verification equality
of a variant of the Schnorr signature scheme. Without
the knowledge of the private key γ with β = gγ mod p,
anyone cannot compute this signature except SA.
The group signature (GID, (1, 2, · · · , t), r, E, S) sat-
isfies h(M, gs((α1α2 · · ·αtβ)h(GID,r)r)E mod p) = E
that can be regarded as the Schnorr signature
for the message M with respect to the public key
Y = (α1α2 · · ·αtβ)h(GID,r)r mod p. If adversaries can
forge signatures, they would solve the discrete logarithm.
That is, they would find z with Y = gz mod p. Hence
the adversaries should be able to find (z, r, α1, α2, · · · , αt)
such that gz = (α1, α2, · · · , αtβ)h(GID,r)r mod p.

SA is able to find (z, r, 1, 2, · · · , t) such that gz =
(α1α2 · · ·αtβ)h(GID,r)r mod p. However, these secondary
public keys are not the registered users’ secondary public
key. If SA generates false certificates for users, it can be
proven.

Case 1: Suppose that the adversaries have an algorithm
to solve this problem. When t = 0, they would find (z, r)
such that gz = βh(GID,r)r mod p. Hence they would forge
a Schnorr signature of the message GID.

Case 2: Assume that an insider attacker ui could pro-
duce a private key â such that gâ = α1α2 · · ·αtβ mod p,
he would be able to compute the group signatures of
messages. The insider attacker acquires all other sec-
ondary public keys β, α1, · · · , αi−1, αi+1, · · · , αt of t in-
nocent users. Then he chooses a random integer â, com-
putes α̂i = gâ mod p, αi = α̂iβ

−1
∏t

j=1,j 6=i α−1
j mod p

and sends the quantity αi as his secondary public key to
SA. Thus gâ = β

∏t
i=1 αi mod p. Finally he can gener-

ate valid signatures by using the false private key â and
forged group signatures with identity GID.

In the improvement, however, the equality
gs′(yyi

i ααi
i )h(r′,αi,IDi) = r′ mod p can be regarded

as the verification equality of the Schnorr signature of the
message (αi, IDi) with respect to the public key (yyi

i ααi
i ).

Without the knowledge of the corresponding private key,
anyone cannot compute Schnorr signature (s′, r′). So the
insider attacker ui should know an integer u such that
gu = (yyi

i ααi
i ) mod p. This equality can also be regarded

as the verification equality of the ElGamal signature [4]
of the message yi with respect to the public key yi. Thus
the insider attacker ui should know (u− xiyi)α−1

i mod q

such that αi = g(u−xiyi)α
−1
i mod p. Hence αi is not a

false secondary public key.
By the way, the public key β is not a false public key
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either, since the users use it to encrypt their secondary
public keys. Therefore the improvement can withstand
the insider forgery attack.

If the system authority fails to verify if αi is a false
secondary public key, or the system authority conspires
with the insider attacker, the insider attacker would ob-
tain such a false secondary public key. If so, the insider
attacker could compute valid group signatures without
the cooperation of other signers.

However, other signers can detect such group signa-
tures since they know the secondary public keys of the
actual signers involved in the forged group signatures.
They can defend themselves by asking the system author-
ity to reveal (s′, r′, αi, yi) computed by each actual signer
involved in the forged group signatures.

Case 3: Suppose that t− 1 signers u1, u2, · · · , ut−1 and
SA collude to forge signatures. If they have a way to com-
pute (z, r) such that gz = (α1, α2, · · · , αtβ)h(GID,r)r mod
p. With their secondary private keys of the correspond-
ing secondary public keys α1, α2, · · · , αt−1, β, they could
computes (z′, r) such that gz′ = α

h(GID,r)
t r mod p. This

is the Schnorr signature of message GID with respect the
secondary public key αt.

Case 4: Suppose that t signers u1, u2, · · · , ut col-
lude to forge signatures without registering. If they
have a way to compute (z, r) such that gz =
(α1, α2, · · · , αtβ)h(GID,r)r mod p. With their secondary
private keys of the corresponding secondary public keys
α1, α2, · · · , αt, they could computes (z′, r) such that gz′ =
βh(GID,r)r mod p. This is the Schnorr signature of mes-
sage GID with respect to the public key β.

Therefore, the improved threshold signature scheme is
secure under security assumption of the Schnorr signa-
ture and the ElGamal signture. The authentication of
the self-certified secondary public keys can be confirmed
simultaneously in the procedure of verifying group signa-
ture.

Case 5. There is a possible conspiracy attack as fol-
lows:
“Any t or more malicious signers can reveal their secret
shares wi’s (i.e., wi = FGID(i) mod q) and then conspire
together to obtain b0 = k+γh(GID, r) by Lagrange inter-
polating polynomial. After that, these malicious signers
can cooperate to generate a valid group signature as fol-
lows:

1) Each signer randomly chooses a number ki, computes
ri = gki mod p, and broadcasts ri.

2) Upon receiving all ri’s, each signer compute R̃ =∏t
i=1 ri mod p.

3) Each signer computes Ẽ = h(M, R̃) and s̃i = ki −
(aih(GID, r)+b0t

−1) mod q, and then broadcasts s̃i.

4) Each signer computes S̃ =
∑t

i=1 s̃i mod q and
announces the generated group signature as
(GID, 1, 2, · · · , t, Ẽ, S̃).

It is easy to see that the generated group signa-
ture will pass the following group signature verification:
h(M, gS̃((α1 · · ·αtβ)h(GID,r)r)Ẽ mod p = Ẽ”.

Though this valid signature of the message M is gener-
ated by a conspiracy, it does be generated by cooperation
of at least t registered signers, rather than t− 1 or fewer
signers. Hence this signature does not violate the intent
of the group. If they abuse the delegation, SA can detect
them by using the relationship between the second public
keys and the identities of these t malicious signers. In
the Wu-Hsu threshold signature scheme, each one of the
malicious signers can compute signatures alone on behalf
of the group without the cooperation after the coalition.
However, this possible attack does not endanger the im-
provement, it gives signers another way to cooperate to
generate group signatures.

5.2 Performance of the Improvement

To generate a group signature, t modular exponentiations
are required by t signers, while 3 modular exponentia-
tions are required by CLK or a verifier to verify a group
signature. This computation load of the improvement is
slightly less than that of the Wu-Hsu scheme. Moreover,
the registration load of the improvement is simpler than
that of the Wu-Hsu scheme, though the storage of the
signatures of the improvement is slightly more than that
of the Wu-Hsu scheme. Contrary to the signer anonymity
provided by the Wu-Hsu scheme, the improvement pro-
vides the system authority the ability to identify the ac-
tual signers of signatures since their secondary public
keys are involved in the verification equality of signatures.
They are anonymous to outsiders. Certainly, anonymity
in my improvement is just obtained using pseudonymous
since all the signatures produced by the same signer are
linkable. However, unlinkability is the security require-
ment of group signatures.

6 Conclusions

We have pointed out that there are some problems in the
Wu-Hsu scheme. The registration stage cannot work since
there is a deadlock in the computation of the self-certified
individual public keys. There is also a small error in the
verification of the self-certified group key. Moreover, some
t or more malicious signers can conspire together against
the group, and the SA can also conspire with a malicious
user to forge the group public key without being detected.
Hence, the Wu-Hsu signature scheme using self certified
public keys at most is only of level 2 defined by Girault.
Finally, we propose an improvement to counter the two
attacks to achieve level 3. We show that the improvement
is secure under the security assumption that the Schnorr
signature scheme and the generalized ElGamal signature
scheme. The signature computation and verification of
the improvement are more efficient than those of the Wu-
Hsu scheme.



International Journal of Network Security, Vol.1, No.1, PP.24–31, July 2005 (http://isrc.nchu.edu.tw/ijns/) 31

The main outstanding of the improvement is traceabil-
ity, by which the system authority SA can identify the
actual signers, though they are anonymous to outsiders.
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